(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】2019145582
(43)【公開日】20190829
(54)【発明の名称】固体電解コンデンサおよび固体電解コンデンサの製造方法
(51)【国際特許分類】
   H01G 9/055 20060101AFI20190802BHJP
   H01G 9/028 20060101ALI20190802BHJP
   H01G 9/00 20060101ALI20190802BHJP
【FI】
   !H01G9/055 103
   !H01G9/028 F
   !H01G9/00 290H
   !H01G9/028 G
【審査請求】未請求
【請求項の数】17
【出願形態】OL
【全頁数】19
(21)【出願番号】2018026234
(22)【出願日】20180216
(71)【出願人】
【識別番号】000116024
【氏名又は名称】ローム株式会社
【住所又は居所】京都府京都市右京区西院溝崎町21番地
(74)【代理人】
【識別番号】110002310
【氏名又は名称】特許業務法人あい特許事務所
(72)【発明者】
【氏名】椙村 直嗣
【住所又は居所】京都市右京区西院溝崎町21番地 ローム株式会社内
(57)【要約】      (修正有)
【課題】低ESR化を図る固体電解コンデンサおよびその製造方法を提供する。
【解決手段】固体電解コンデンサA1は、第1の極を構成する導電性の多孔質焼結体1と、多孔質焼結体上に形成された誘電体層2と、誘電体層上に形成された固体電解質層3と、固体電解質層上に形成された第2の極を構成する電極層4とを含む。固体電解質層は、無機材料からなる固体粒子32bと、固体粒子を覆うように形成された導電性の有機材料部32cとを有する固体粒子含有層32aを含む。固体粒子と有機材料部との間には、シラン由来のケイ素を含む結合構造が形成されており、当該結合構造を介して固体粒子と有機材料部とが結合されている。
【選択図】図2
【特許請求の範囲】
【請求項1】
第1の極を構成する導電性の多孔質焼結体と、
前記多孔質焼結体上に形成された誘電体層と、
前記誘電体層上に形成された固体電解質層と、
前記固体電解質層上に形成された第2の極を構成する電極層とを含み、
前記固体電解質層は、シランカップリング剤で表面処理された無機材料からなる固体粒子と、前記固体粒子を覆うように形成された導電性の有機材料部を有する固体粒子含有層を含む、固体電解コンデンサ。
【請求項2】
第1の極を構成する導電性の多孔質焼結体と、
前記多孔質焼結体上に形成された誘電体層と、
前記誘電体層上に形成された固体電解質層と、
前記固体電解質層上に形成された第2の極を構成する電極層とを含み、
前記固体電解質層は、無機材料からなる固体粒子と、前記固体粒子を覆うように形成された導電性の有機材料部とを有する固体粒子含有層を含み、
前記固体粒子と前記有機材料部との間は、シラン由来のケイ素を介して結合されている、固体電解コンデンサ。
【請求項3】
前記固体電解質層は、前記多孔質焼結体の内部において前記誘電体層を覆う内部電極層を含み、
前記固体粒子含有層は、前記内部電極層を覆うように形成されている、請求項1または2に記載の固体電解コンデンサ。
【請求項4】
前記有機材料部は、導電性ポリマーを含む、請求項1〜3のいずれか一項に記載の固体電解コンデンサ。
【請求項5】
前記固体粒子は、グラファイトを含む、請求項1〜4のいずれか一項に記載の固体電解コンデンサ。
【請求項6】
前記グラファイトは、扁平形状を有している、請求項5に記載の固体電解コンデンサ。
【請求項7】
前記固体粒子は、金属を含む、請求項1〜6のいずれか一項に記載の固体電解コンデンサ。
【請求項8】
前記固体粒子は、金属酸化物を含む、請求項1〜7のいずれか一項に記載の固体電解コンデンサ。
【請求項9】
前記多孔質焼結体は、弁作用金属を含む、請求項1〜8のいずれか一項に記載の固体電解コンデンサ。
【請求項10】
第1の極を構成する導電性の多孔質焼結体を形成する工程と、
前記多孔質焼結体上に誘電体層を形成する工程と、
前記誘電体層上に固体電解質層を形成する工程と、
前記固体電解質層上に第2の極を構成する電極層を形成する工程とを含み、
前記固体電解質層を形成する工程は、シランカップリング剤で表面処理された無機材料からなる固体粒子、導電性の有機材料の分散体および溶媒を含む分散体液を前記誘電体層側に供給した後、前記溶媒を除去することによって固体粒子含有層を形成する工程を含む、固体電解コンデンサの製造方法。
【請求項11】
前記固体電解質層を形成する工程は、前記多孔質焼結体の内部において前記誘電体層を覆う内部電極層を形成する工程を含み、
前記固体粒子含有層を形成する工程は、前記分散体液を前記内部電極層上に塗布した後に、前記溶媒を除去する工程を含む、請求項10に記載の固体電解コンデンサの製造方法。
【請求項12】
前記有機材料は、導電性ポリマーを含む、請求項10または11に記載の固体電解コンデンサの製造方法。
【請求項13】
前記固体粒子は、グラファイトを含む、請求項10〜12のいずれか一項に記載の固体電解コンデンサの製造方法。
【請求項14】
前記グラファイトは、扁平形状を有している、請求項13に記載の固体電解コンデンサの製造方法。
【請求項15】
前記固体粒子は、金属を含む、請求項10〜14のいずれか一項に記載の固体電解コンデンサの製造方法。
【請求項16】
前記固体粒子は、金属酸化物を含む、請求項10〜15のいずれか一項に記載の固体電解コンデンサの製造方法。
【請求項17】
前記多孔質焼結体は、弁作用金属を含む、請求項10〜16のいずれか一項に記載の固体電解コンデンサの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、固体電解コンデンサおよびその製造方法に関する。
【背景技術】
【0002】
たとえば、特許文献1は、陽極酸化皮膜と、陽極酸化皮膜上に形成されたプリコート層と、プリコート層上に形成された内部導電性高分子層とを含む弁作用金属からなる多孔質の陽極体と、陽極体上に形成された導電性高分子層と、導電性高分子層上に形成されたグラファイト層と、グラファイト層上に形成された金属層とを備え、陽極体上の陰極部と陽極部との境界に絶縁体からなるレジスト部が設けられた、固体電解コンデンサを開示している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−311582号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
固体電解コンデンサの特性の一つとして、等価直列抵抗(ESR:Equivalent series resistance)が知られている。ESRは、コンデンサによって不要な寄生成分であるため、できる限り低くすることが望まれている。
本発明の一実施形態は、従来よりもさらに低ESR化を図ることができる固体電解コンデンサおよびその製造方法を提供する。
【課題を解決するための手段】
【0005】
本発明の一実施形態に係る固体電解コンデンサは、第1の極を構成する導電性の多孔質焼結体と、前記多孔質焼結体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された第2の極を構成する電極層とを含み、前記固体電解質層は、シランカップリング剤で表面処理された無機材料からなる固体粒子と、前記固体粒子を覆うように形成された導電性の有機材料部を有する固体粒子含有層を含む。
【0006】
また、本発明の一実施形態に係る固体電解コンデンサは、第1の極を構成する導電性の多孔質焼結体と、前記多孔質焼結体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された第2の極を構成する電極層とを含み、前記固体電解質層は、無機材料からなる固体粒子と、前記固体粒子を覆うように形成された導電性の有機材料部とを有する固体粒子含有層を含み、前記固体粒子と前記有機材料部との間は、シラン由来のケイ素を介して結合されている。
【0007】
また、本発明の一実施形態に係る固体電解コンデンサの製造方法は、第1の極を構成する導電性の多孔質焼結体を形成する工程と、前記多孔質焼結体上に誘電体層を形成する工程と、前記誘電体層上に固体電解質層を形成する工程と、前記固体電解質層上に第2の極を構成する電極層を形成する工程とを含み、前記固体電解質層を形成する工程は、シランカップリング剤で表面処理された無機材料からなる固体粒子、導電性の有機材料の分散体および溶媒を含む分散体液を前記誘電体層側に供給した後、前記溶媒を除去することによって固体粒子含有層を形成する工程を含む。
【図面の簡単な説明】
【0008】
【図1】図1は、本発明の第1実施形態に係る固体電解コンデンサの模式的な断面図である。
【図2】図2は、図1の固体電解コンデンサの要部拡大図である。
【図3】図3は、固体粒子およびその周囲の有機材料部の拡大図である。
【図4】図4は、固体粒子と有機材料部との結合状態を示す図である。
【図5】図5は、本発明の第1実施形態に係る固体電解コンデンサの製造方法のフロー図である。
【図6】図6は、図5に示す固体電解コンデンサの製造方法における外部電極層を形成する工程のフロー図である。
【図7】図7は、本発明の第2実施形態に係る固体電解コンデンサの模式的な要部拡大断面図である。
【図8】図8は、本発明の第3実施形態に係る固体電解コンデンサの模式的な要部拡大断面図である。
【図9】図9は、本発明の第1参考形態に係る固体電解コンデンサの模式的な断面図である。
【図10】図10は、図9のA方向から前記固体電解コンデンサを見たときの図である。
【図11】図11Aは、図9の領域α1の部分拡大図であり、図11Bは、図1の領域β1の部分拡大図であり、図11Cは、図1の領域γ1の部分拡大図である。
【図12】図12は、固体電解質層と電極層(陰極層)との間の架橋構造を示す図である。
【図13】図13は、本発明の第1参考形態に係る固体電解コンデンサの製造方法のフロー図である。
【図14】図14Aは、本発明の第1参考形態に係る固体電解コンデンサの製造工程の一部を示す断面図であり、図14Bは、本発明の第1実施形態に係る固体電解コンデンサの製造工程の一部を示す平面図である。
【図15】図15は、本発明の第1参考形態に係る固体電解コンデンサの製造工程の一部を示す図である。
【図16】図16は、本発明の第1参考形態に係る固体電解コンデンサの製造工程の一部を示す図である。
【図17】図17は、本発明の第1参考形態に係る固体電解コンデンサの製造工程の一部を示す図である。
【図18】図18は、本発明の第1参考形態に係る固体電解コンデンサの製造工程によって得られるコンデンサ素子を示す断面図である。
【図19】図19は、本発明の第1参考形態に係る固体電解コンデンサの製造工程の一部を示す図である。
【発明を実施するための形態】
【0009】
以下では、本発明の実施形態および参考形態を、添付図面を参照して詳細に説明する。
<本発明の実施形態>
図1は、本発明の第1実施形態に係る固体電解コンデンサA1の模式的な断面図である。図2は、図1の固体電解コンデンサA1の要部拡大図である。図3は、固体粒子32bおよびその周囲の有機材料部32cの拡大図である。図4は、固体粒子32bと有機材料部32cとの結合状態を示す図である。
【0010】
固体電解コンデンサA1は、多孔質焼結体1と、陽極ワイヤ11と、誘電体層2と、固体電解質層3と、本発明の電極層の一例としての陰極層4と、封止樹脂5と、陽極外部端子6と、陰極外部端子7とを備えている。
この実施形態では、多孔質焼結体1は、誘電体層2に対して本発明の第1の極の一例としての陽極をなすものであり、たとえば、弁作用金属からなっていてもよい。弁作用金属としては、たとえば、タンタル(Ta)、ニオブ(Nb)等を適用できる。
【0011】
多孔質焼結体1は、この実施形態では、直方体形状である。陽極ワイヤ11は、多孔質焼結体1の内部にその一部が進入している。陽極ワイヤ11は、たとえば、弁作用金属からなっていてもよい。陽極ワイヤ11に使用できる弁作用金属としては、たとえば、前述のものが挙げられる。また、多孔質焼結体1は、その内部に微小な多数の細孔を有している。
【0012】
誘電体層2は、多孔質焼結体1の表面に積層されている。多孔質焼結体1は、多数の細孔を有する構造であり、誘電体層2が覆う表面は、多孔質焼結体1の外観に表れる表面だけでなく、それぞれの細孔の内表面を含んでいてもよい。誘電体層2は、たとえば、弁作用金属の酸化物からなっていてもよく、具体的には、五酸化タンタル(Ta)、五酸化ニオブ(Nb)等を適用できる。
【0013】
固体電解質層3は、誘電体層2を覆っている。図2に示すように、固体電解質層3は、たとえば、内部電極層31および外部電極層32を含んでいてもよい。
内部電極層31は、誘電体層2のうち、多孔質焼結体1の細孔の内表面を覆っている部分を覆っており、多孔質焼結体1の細孔を埋める形態となっていてもよい。内部電極層31としては、たとえば、二酸化マンガン、導電性ポリマー等を適用できる。
【0014】
外部電極層32は、内部電極層31上に積層されており、多孔質焼結体1の外部において内部電極層31を覆う形態となっていてもよい。この実施形態では、外部電極層32は、固体粒子含有層32aとして構成されている。
固体粒子含有層32aは、固体粒子32bおよび有機材料部32cを含んでいる。
固体粒子32bは、固体粒子含有層32aに分散して含まれている。固体粒子32bを含むことによって、固体粒子含有層32aは、その表面が凹凸状となっていてもよい。このような凹凸状の表面性状を実現するには、たとえば固体粒子含有層32aの厚さが2〜30μm程度である場合に、固体粒子32bの平均粒径が5μm以下であることが好ましい。
【0015】
固体粒子32bは、この実施形態では、シランカップリング剤で表面処理された無機材料からなる。具体的には、シランカップリング剤で表面処理されたグラファイト等を適用できる。なお、グラファイトは、固体粒子32bとして適用可能な材質の一例に過ぎず、固体粒子32bの他の材質としては、たとえば、タンタル(Ta)、ステンレス等の金属、酸化すず、ペロブスカイト型酸化物等の金属酸化物等、粒子の形態を取りうる各種導電性材料を適用することができる。
【0016】
有機材料部32cは、この実施形態では、固体粒子32bの表面処理に使用されたシランカップリング剤の反応性官能基と反応して結合を形成できる官能基を有する導電性の有機材料であれば特に制限されない。たとえば、シランカップリング剤の反応性官能基としては、アミノ基、エポキシ基、メタクリル基、ビニル基、メルカプト基等が挙げられ、有機材料部32cとしては、これらの反応性官能基との間に結合を形成できる官能基を有するものであればよい。具体的には、シランカップリング剤の反応性官能基との間に結合を形成できる官能基を有する導電性ポリマーを適用できる。
【0017】
これにより、図3および図4に示すように、固体粒子32bと有機材料部32cとの間には、シラン由来のケイ素を含む結合構造32eが形成されており、当該結合構造32eを介して固体粒子32bと有機材料部32cとが結合されている。
陰極層4は、固体電解質層3の外部電極層32上に積層されており、たとえば、下地層41および上層42を含んでいてもよい。
【0018】
下地層41は、たとえば、グラファイトであってもよい。この実施形態では、固体電解質層3の外部電極層32をなす固体粒子含有層32aと陰極層4の下地層41とが直接接している。また、固体粒子含有層32aの固体粒子32bと陰極層4の下地層41とは、同じ材質であるグラファイトからなっていてもよい。さらに、下地層41は、凹凸状とされた固体粒子含有層32a上に形成されている。上層42は、下地層41上に積層されており、たとえば、銀(Ag)からなっていてもよい。
【0019】
封止樹脂5は、多孔質焼結体1、陽極ワイヤ11、誘電体層2、固体電解質層3、および陰極層4を覆っており、たとえば、エポキシ樹脂からなっていてもよい。
陽極外部端子6は、陽極ワイヤ11に接合されており、その一部が封止樹脂5から露出している。陽極外部端子6は、たとえば、銅メッキが施された42アロイ等のNi−Fe合金からなっていてもよい。陽極外部端子6のうち封止樹脂5から露出した部位は、固体電解コンデンサA1を面実装するための実装端子として用いられる。
【0020】
陰極外部端子7は、たとえば、銀(Ag)等の導電性接合材71を介して陰極層4に接合されており、その一部が封止樹脂5から露出している。陰極外部端子7は、たとえば、銅メッキが施された42アロイ等のNi−Fe合金からなっていてもよい。陰極外部端子7のうち封止樹脂5から露出した部位は、固体電解コンデンサA1を面実装するための実装端子として用いられる。
【0021】
次に、固体電解コンデンサA1の製造方法について、以下に説明する。
図5および図6は、固体電解コンデンサA1の製造方法のフローを示している。
固体電解コンデンサA1を製造するには、まず、多孔質焼結体1が形成される。この工程では、たとえば、タンタル(Ta)やニオブ(Nb)等の弁作用金属の微粉末が準備される。この微粉末が、陽極ワイヤ11となるワイヤ材料とともに金型に装填される。
【0022】
そして、この金型で加圧成形することによって、ワイヤ材料が進入した多孔質体が得られる。この多孔質体および上記ワイヤ材料に焼結処理が施される。この焼結処理によって、弁作用金属の微粉末同士が焼結し、多数の細孔を有する多孔質焼結体1が形成される。
次に、誘電体層2が形成される。たとえば、上記ワイヤ材料によって多孔質焼結体1を支持しながら、リン酸水溶液の化成液に多孔質焼結体1が浸漬される。そして、この化成液中において、多孔質焼結体1に対して陽極酸化処理が施される。これにより、多孔質焼結体1の外表面および内表面を覆うように、たとえば五酸化タンタル(Ta)や五酸化ニオブ(Nb)等からなる誘電体層2が形成される。
【0023】
次に、固体電解質層3が形成される。固体電解質層3を形成する工程では、まず、内部電極層31が形成される。
たとえば、多孔質焼結体1が既知の酸化剤溶液に浸漬され、引き揚げられる。この多孔質焼結体1が既知のモノマー溶液に浸漬され、引き揚げた後に乾燥させる。これにより、化学重合反応を起こさせる。そして、必要に応じて洗浄や再化成処理が行われる。これにより、導電性ポリマーからなる内部電極層31が形成される。または、モノマーおよびドーパントを含む電解質液が塗布され、電流を流すことによって導電性ポリマーからなる内部電極層31を形成する電解重合法を用いてもよい。あるいは、多孔質焼結体1が硝酸マンガン水溶液に浸漬された後に、多孔質焼結体1が硝酸マンガン水溶液から引き揚げられる。そして、硝酸マンガン水溶液が付着した多孔質焼結体1に対して焼成処理が施される。これにより、二酸化マンガンからなる内部電極層31が形成されてもよい。
【0024】
次に、外部電極層32が形成される。まず、ポリマー分散体と溶媒とが混合される。ポリマー分散体は、あらかじめ重合反応させた導電性ポリマー粒子であり、たとえば、ポリピロール、ポリチオフェン、ポリ(N−メチルピロール)、ポリ(3−メチルチオフェン)、ポリ(3−メトキシチオフェン)、ポリ(3,4−エチレンジオキシチオフェン)から選ばれる1種または2種からなる重合体または共重合体が、導電率の観点から好適に用いられる。さらには、ポリピリロール、ポリ(3,4−エチレンジオキシチオフェン)は、導電性をより向上させるとともに、耐熱性を高めることが可能である点から、より好ましい。
【0025】
溶媒は、上記ポリマー分散体を均一に分散させ得るものであれば特に制限されず、たとえば、水、エタノール、有機溶剤等を適用できる。
次に、ポリマー分散体と溶媒との混合物に固体粒子32bが追加され、混合される。固体粒子32bは、この実施形態では、シランカップリング剤で表面処理されたグラファイトであってもよい。グラファイトに対するシランカップリング剤の表面処理としては、公知の表面処理方法を適用できる。シランカップリング剤としては、たとえば、アミノシラン、エポキシシラン、メタクリルシラン、ビニルシラン、メルカプトシラン等の各種シランカップリング剤を適用できる。
【0026】
なお、グラファイトは、固体粒子32bとして適用可能な材質の一例に過ぎず、固体粒子32bの他の材質としては、たとえば、タンタル(Ta)、ステンレス等の金属、酸化すず、ペロブスカイト型酸化物等の金属酸化物等、粒子の形態を取りうる各種導電性材料を適用することができる。
また、この実施形態では、固体粒子32bの平均粒径は5μm以下であってもよい。また、固体粒子32bの濃度は、上記ポリマー分散体に対して5重量%〜70重量%であってもよく、好ましくは20重量%〜60重量%であってもよい。これにより、固体粒子32bを含む分散体液が得られる。
【0027】
次に、上記分散体液が、多孔質焼結体1に形成された内部電極層31に塗布される。この塗布方法としては、多孔質焼結体1を上記分散体液に浸漬させること、または、多孔質焼結体1に上記分散体液を吹き付けること等、多孔質焼結体1の内部電極層31に適切に塗布可能な手法が適用できる。
次に、塗布した上記分散体液を、たとえば乾燥させることによって、上記溶媒が除去される。これにより、有機材料部32cおよび分散配置された固体粒子32bを含む固体粒子含有層32aが形成される。この実施形態では、この固体粒子含有層32aによって外部電極層32が構成される。
【0028】
次に、陰極層4が形成される。まず、下地層41が形成される。下地層41の形成は、たとえば、グラファイトと有機溶剤との溶液に多孔質焼結体1が浸漬され、引き揚げられた後に、乾燥あるいは焼成される。次に、上層42が形成される。上層42の形成は、たとえば、銀(Ag)フィラーと有機溶剤との溶液に多孔質焼結体1が浸漬され、引き揚げられた後に、乾燥あるいは焼成される。これにより、上層42が形成され、陰極層4が得られる。
【0029】
この後は、陽極外部端子6の接合、および導電性接合材71を用いた陰極外部端子7の接合が行われる。そして、金型成型等によって、封止樹脂5が形成される。以上の工程を経ることによって、図1および図2に示す固体電解コンデンサA1が得られる。
次に、固体電解コンデンサA1の作用について説明する。
この実施形態に係る固体電解コンデンサA1では、図3および図4に示すように、固体粒子32bと有機材料部32cとの間には、シラン由来のケイ素を含む結合構造32eが形成されており、当該結合構造32eを介して固体粒子32bと有機材料部32cとが結合されている。これにより、固体粒子32bと有機材料部32cとの密着性を向上させることができる。その結果、固体粒子32bと有機材料部32cとの間の接触抵抗を低減することができ、低ESR化を図ることができる。
【0030】
また、この実施形態に係る固体電解コンデンサA1では、固体粒子含有層32aは、固体粒子32bを含むことによって、表面が凹凸状となる。これにより、固体電解質層3の外部電極層32に対して、陰極層4が入り込んだ構造となる。この構造がいわゆるアンカー効果を発揮することによって、固体電解質層3と陰極層4との間にクラックが発生することを抑制することができる。また、接触抵抗を生じうる固体電解質層3と陰極層4との界面の面積を増大させることができる。したがって、固体電解コンデンサA1の低ESR化を図ることができる。
【0031】
さらに、固体粒子含有層32aと陰極層4の下地層41とが、直接接している。そして、固体粒子32bと下地層41とは、ともに材質がグラファイトであってもよく、この場合、下地層41が固体粒子含有層32aに対して、馴染みよく接合する効果が期待できる。これは、固体電解質層3と陰極層4との接合強度を高めるのに適している。
また、外部電極層32が固体粒子含有層32aのみで構成されていれば、固体電解コンデンサA1の製造方法において、外部電極層32を形成するために、過度に複雑な工程を経る必要がない。したがって、比較的効率良く固体電解コンデンサA1を製造することができる。
【0032】
図7および図8は、本発明の他の実施形態を示している。なお、これらの図において、上記実施形態と同一または類似の要素には、上記実施形態と同一の符号を付している。
図7は、本発明の第2実施形態に係る固体電解コンデンサA2の模式的な要部拡大断面図である。
固体電解コンデンサA2では、外部電極層32が固体粒子含有層32aと導電性ポリマー層32dとが積層された構成となっている点が、前述の第1実施形態と異なっている。
【0033】
導電性ポリマー層32dは、内部電極層31と固体粒子含有層32aとの間に介在しており、多孔質焼結体1の外部において内部電極層31を覆っている。導電性ポリマー層32dは、たとえば、図6に示したフローにおいて、固体粒子32bの追加を行わない分散体液を多孔質焼結体1に形成された内部電極層31に塗布し、上記溶媒を除去することによって形成される。
【0034】
このような実施形態によっても、固体電解コンデンサA2の低ESR化を図ることができる。
また、前述の第1実施形態とは異なり、導電性ポリマー層32dが固体粒子含有層32aと陰極層4との間に介在する構成であってもよい。この場合、固体粒子32bが下地層41に積極的に接する構成とはならない。しかし、凹凸状である固体粒子含有層32aの表面に形成された導電性ポリマー層32dは、凹凸状となることが期待できる。これにより、固体電解質層3と陰極層4との接合強度を高めることができる。
【0035】
図8は、本発明の第3実施形態に係る固体電解コンデンサA3の模式的な要部拡大断面図である。
固体電解コンデンサA3は、前述の固体電解コンデンサA1と同様の構成であり、主な相違点は、固体粒子32bの形状である。より具体的には、第3実施形態に係る固体粒子32bは、たとえばグラファイトからなり、偏平形状である。典型的には、固体粒子32bの長手方向寸法に対する厚さ寸法の比が、1:0.05〜1:0.5である。図8に示すように、ほとんどの固体粒子32bは、厚さ方向が図中上下方向に沿っており、長手方向が図中上下方向と直角である方向に沿っている。
【0036】
固体粒子含有層32aの表面は、凹凸状となっている。このような凹凸状の表面性状を実現するには、たとえば固体粒子含有層32aの厚さが2〜30μm程度である場合に、固体粒子32bの平均粒径が5μm以下であることが好ましい。なお、偏平形状の固体粒子32bにおいては、平均粒径は長手方向寸法を指す。図8に示すように、固体粒子含有層32aの凹凸状となった表面の凸部分には、固体粒子32bの少なくとも一部が存在していてもよい。
【0037】
固体電解コンデンサA3の製造工程においては、固体粒子32bの濃度は、前述のポリマー分散体に対して5重量%〜70重量%であってもよく、好ましくは20重量%〜60重量%であってもよい。これにより、固体電解コンデンサA3においては、有機材料部32cに対する固体粒子32bの濃度が、5重量%〜70重量%となり、より好ましくは20重量%〜60重量%となる。
【0038】
次に、本発明の参考形態について、詳細に説明する。
<本発明の参考形態>
図9は、本発明の第1参考形態に係る固体電解コンデンサA4の模式的な断面図である。図10は、図9のA方向から固体電解コンデンサA4を見たときの図である。図11Aは、図9の領域α1の部分拡大図であり、図11Bは、図1の領域β1の部分拡大図であり、図11Cは、図1の領域γ1の部分拡大図である。図12は、固体電解質層15と電極層(陰極層16)との間の架橋構造19を示す図である。
【0039】
固体電解コンデンサA4は、コンデンサ素子21と、導電性接着層22と、樹脂パッケージ23と、枕電極24と、陽極実装端子51と、陰極実装端子52とを備えている。
固体電解コンデンサA4は、たとえば、回路基板S1aに面実装された状態で用いられる。固体電解コンデンサA4は、図9の上下方向の寸法が、たとえば0.8mm程度であり、図9の左右方向の寸法が、たとえば1.6mm程度であり、図9の紙面奥行き方向の寸法が、たとえば0.85mm程度であってもよい。
【0040】
コンデンサ素子21は、多孔質焼結体9と、陽極ワイヤ12と、誘電体層13(図11A〜図11C参照)と、撥水膜14と、固体電解質層15と、陰極層16とを含んでいる。
多孔質焼結体9は、たとえば直方体形状である。多孔質焼結体9は、誘電体層13に対して第1の極の一例としての陽極をなすものであり、たとえば、弁作用金属からなっていてもよい。弁作用金属としては、たとえば、タンタル(Ta)、ニオブ(Nb)等を適用できる。図11A、図11Bおよび図11Cに示すように、多孔質焼結体9には多数の細孔18が形成されている。
【0041】
多孔質焼結体9は、図9の方向xを向く面9aと、方向xの反対側を向く面9cと、面9aおよび面9cとつながる4つの面9b(図9にて2つのみ示す)とを有している。面9a,9b,9cは、それぞれ、矩形状であってもよい。
陽極ワイヤ12は、たとえば、タンタル(Ta)、ニオブ(Nb)等どの弁作用金属からなっていてもよい。陽極ワイヤ12は、多孔質焼結体9の面9aから、方向xに向かって突出している。陽極ワイヤ12の直径は、たとえば0.15mm程度であってもよい。
【0042】
図11A〜図11Cに示すように、誘電体層13は、多孔質焼結体9に積層されている。誘電体層13は、たとえば、多孔質焼結体9を構成する弁作用金属の酸化物からなっていてもよい。このような弁作用金属の酸化物としては、たとえば、五酸化タンタル(Ta)、五酸化ニオブ(Nb)等が挙げられる。
図9に示すように、撥水膜14は、多孔質焼結体9および陽極ワイヤ12を覆っている。撥水膜14は、撥水性と導電性とを有する。この参考形態では、撥水膜14は、フッ素樹脂と導電性ポリマーとが混合されていることによって、撥水性と導電性とを有していてもよい。
【0043】
この参考形態において、このようなフッ素樹脂は、たとえば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化エチレンプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、およびポリビニリデンフルオライド(PVDF)よりなる群の少なくとも一つから選択される樹脂を含んでいてもよい。
【0044】
また、導電性ポリマーとしては、たとえば、ポリ(3,4−エチレンジオキシチオフェン)にポリスチレンスルホン酸をドーパントとしてドープした材質等が挙げられる。
撥水膜14は、固体電解質層15を形成するための溶液が陽極ワイヤ12をしみ上がることを防止するためのものである。なお、フッ素樹脂の他に、たとえばシリコーンを用いることによって、撥水膜14に撥水性を持たせてもよい。
【0045】
図9の部分拡大図および図10に示すように、撥水膜14は、第1膜状部141と、第2膜状部142とを有している。
第1膜状部141は、陽極ワイヤ12が貫通し、且つ、陽極ワイヤ12の周方向の全体にわたって、陽極ワイヤ12に密着している。第1膜状部141は、多孔質焼結体9の面9aに沿って広がっている。第1膜状部141は、面9aにおいて、面9aの端縁の近傍には形成されておらず、陽極ワイヤ12寄りの部位に形成されている。第1膜状部141は、方向xを向く平坦な面141aを有する。
【0046】
面141aは、面141aの全体にわたって、面9aからの距離が一様である。すなわち、第1膜状部141は、第1膜状部141の全体にわたって、厚さL1aが一様である。厚さL1aは、たとえば50μm以下であり、この参考形態では、厚さL1aは2μm〜4μmであってもよい。コンデンサ素子21の体積を大きくするためには、厚さL1aはなるべく小さい方が好ましい。図11Aに示すように、第1膜状部141の一部は細孔18に形成されていることもある。このとき、第1膜状部141は多孔質焼結体9に食い込むように形成されているといえる。なお、ここでいう厚さL1aは、面9a(多孔質焼結体9のうち最も方向x側に位置する部位)と、面141aとの離間距離をいう。
【0047】
図9の部分拡大図に示すように、第2膜状部142は、方向xに向かって第1膜状部141から延びている。図10に示すように、第2膜状部142は、陽極ワイヤ12を覆っており、且つ、陽極ワイヤ12の周方向の全体にわたって、陽極ワイヤ12に密着している。図9の部分拡大図に示すように、第2膜状部142は、陽極ワイヤ12の径方向外方を向く面142aを有している。
【0048】
面142aは、面142aの全体にわたって、陽極ワイヤ12の表面からの距離が一様である。すなわち、第2膜状部142は、第2膜状部142の全体にわたって、厚さL1bが一様である。厚さL1bは、たとえば50μm以下であり、この参考形態では、厚さL1bは2μm〜4μmであってもよい。ここでいう厚さL1bは、陽極ワイヤ12の表面と、面142aとの離間距離をいう。また、第2膜状部142の厚さL1bは、第1膜状部141の厚さL1aと同一であってもよい。
【0049】
図9、図11Bおよび図11Cに示すように、固体電解質層15は、誘電体層13に積層されている。固体電解質層15の一部は、細孔18に形成されている。図9に示すように、固体電解質層15の一部は、多孔質焼結体9の面9a,9b,9cに形成されている。固体電解質層15は、面9aにおいて、陽極ワイヤ12寄りの部位には形成されておらず、面9aの端縁の近傍に形成されている。固体電解質層15は、第1膜状部141と密着している。図10に示すように、面9a上にて固体電解質層15は、第1膜状部141を囲む形状となっている。
【0050】
図9に示すように、固体電解質層15は、方向xに向かって第1膜状部141よりも隆起する部位を有している。このように固体電解質層15の隆起した部位の最大厚さL1c(図11B参照)は、たとえば、2μm〜100μmであってもよい。前述のように固体電解質層15の一部は細孔18に形成されているが、ここでいう最大厚さL1cは、面9a(多孔質焼結体9のうち最も方向x側に位置する部位)と、固体電解質層15の最も隆起した部位との方向xにおける離間距離をいう。
【0051】
図9および図11Cに示すように、陰極層16は、固体電解質層15を覆っている。この参考形態では、陰極層16は、固体電解質層15における多孔質焼結体9の面9b,9c上の部分の覆っており、固体電解質層15における多孔質焼結体9の面9a上の部分は、陰極層16から露出している。陰極層16は、固体電解質層15と導通している。
この参考形態では、図12に示すように、固体電解質層15と陰極層16との間に架橋構造19が形成されている。より具体的には、固体電解質層15および陰極層16は、ともに親水性の官能基を有する物質からなっていてもよく、架橋構造19は、固体電解質層15および陰極層16の親水性の官能基とアミンとの結合による架橋構造19を含んでいてもよい。図12では、一例として、スルホン酸残基を有するポリスチレンスルホン酸(PSS)を含む物質からなる固体電解質層15と、カルボン酸残基を有するグラファイトからなる陰極層16とが、アルキルジアミンによって結合された架橋構造19が示されている。
【0052】
上記のような固体電解質層15としては、たとえば、ポリ(3,4−エチレンジオキシチオフェン)にポリスチレンスルホン酸をドーパントとしてドープした導電性ポリマー等が挙げられる。
一方、陰極層16としては、カルボン酸残基のような親水性の官能基を有するグラファイト等が挙げられる。また、陰極層16は、上記親水性の官能基を有する物質層の上に、銀(Ag)層を積層した構造であってもよい。
【0053】
導電性接着層22は、たとえば、銀ペーストであってもよい。樹脂パッケージ23は、たとえば、エポキシ樹脂からなっていてもよい。樹脂パッケージ23は、コンデンサ素子21を保護するためのものである。
枕電極24は、コンデンサ素子21に後述の陽極実装端子51および陰極実装端子52を取り付ける際に、陽極ワイヤ12を支持するためのものである。枕電極24は、方向xと交差する方向に延びており、この参考形態では、図9の上下方向に延びている。枕電極24は、陽極ワイヤ12のうち第2膜状部142から離間した部位に接合され、且つ、陽極ワイヤ12と導通している。枕電極24は、たとえば、銅メッキが施された42アロイ等のNi−Fe合金からなっていてもよい。
【0054】
陽極実装端子51および陰極実装端子52は、固体電解コンデンサA4を回路基板S1aに実装するためのものである。陽極実装端子51および陰極実装端子52はいずれも、たとえば、銅メッキが施された42アロイ等のNi−Fe合金からなっていてもよい。
陽極実装端子51は、枕電極24を支持し、且つ、枕電極24を介して陽極ワイヤ12と導通している。陽極実装端子51の一部は、樹脂パッケージ23から露出している。陽極実装端子51において樹脂パッケージ23から露出している面は、固体電解コンデンサA4を回路基板S1aに実装するための実装面513となっている。実装面513がハンダ89によって回路基板S1aに対し接着されることによって、固体電解コンデンサA4は回路基板S1aに対し実装される。
【0055】
陽極実装端子51は、厚肉部511と、厚肉部511よりも厚さ(図9の上下方向における寸法)が薄い薄肉部512とを含む。厚肉部511にて実装面513と反対側に位置する面は、枕電極24を支持する支持面514となっている。支持面514は、実装面513と平行であってもよい。厚肉部511の方向x側の部分には、実装面513から支持面514側に凹むフィレット部511aが形成されている。これにより、実装面513と回路基板S1aとを接着するハンダ89の一部は、ハンダフィレットとして形成される。
【0056】
薄肉部512は、陽極実装端子51が陰極層16ないし固体電解質層15に接触するのを防止するために形成されている。薄肉部512において実装面513と反対側に位置する面は、退避面515となっている。退避面515は、実装面513と平行であってもよい。退避面515は、陽極実装端子51において、方向xと反対側の端部に位置している。退避面515は薄肉部512におけるものであるから、退避面515と実装面513との距離は、支持面514と実装面513との距離よりも小さい。
【0057】
退避面515は、必ずしも実装面513と平行である必要はなく、支持面514から方向xの反対側に向かうにつれて、徐々に実装面513に接近する面であってもよい。この参考形態では、退避面515は、支持面514と起立面516を介してつながっている。起立面516は、退避面515に対し垂直である面であり、退避面515から支持面514に延びている。
【0058】
陰極実装端子52は、導電性接着層22および陰極層16を介して固体電解質層15と導通している。陰極実装端子52の一部は、樹脂パッケージ23から露出している。陰極実装端子52において樹脂パッケージ23から露出している面は、固体電解コンデンサA4を回路基板S1aに実装するための実装面523となっている。実装面523がハンダ89によって回路基板S1aに対し接着されることによって、固体電解コンデンサA4は回路基板S1aに対し実装される。実装面523の面積と実装面513の面積とが同一であるならば、セルフアライメントに効果的である。陰極実装端子52の方向xの反対側の部分には、陽極実装端子51と同様に、フィレット部52aが形成されている。陰極実装端子52にて実装面523と反対側に位置する面は、等価直列抵抗(ESR)を向上させる観点から、大きい方が好ましい。
【0059】
次に、図13〜図19を参照して、固体電解コンデンサA4の製造方法について、以下に説明する。
まず、コンデンサ素子21の製造方法について説明する。図13には、コンデンサ素子21の製造方法の流れを示す。
まず、図14Aおよび図14Bに示す多孔質焼結体9’を形成する工程S1が行われる。工程S1では、たとえば、タンタル(Ta)やニオブ(Nb)等の弁作用金属の微粉末に陽極ワイヤ12’の一部を進入させた状態で加圧成形が行われる。この加圧成形によって得られた加圧成型体に対して焼結処理が施される。この焼結処理によって、弁作用金属の微粉末どうしが焼結し、多数の細孔を有する多孔質焼結体9’が形成される。
【0060】
次に、撥水膜14を形成する工程S2が行われる。なお、撥水膜14を形成する工程S2は、後述する誘電体層13を形成する工程S3の後に行ってもよく、後述する固体電解質層15を形成する工程S4の前であればよい。工程S2では、フッ素樹脂材料と導電性ポリマー材料とを含む液体材料8を陽極ワイヤ12’および多孔質焼結体9’に付着させる(図19の工程S21)。
【0061】
図14Aおよび図14Bに示すように、液体材料8を陽極ワイヤ12’に付着させる工程S21では、先端が二股状になっている保持部材88の二股部分に、液体材料としての水性分散体8を保持させる。液体材料8は、フッ素樹脂材料および導電性ポリマー材料を含んでおり、比較的粘性が高い。
次に、図14Aおよび図14Bの仮想線で示すように、保持部材88を陽極ワイヤ12’に接近させ、保持部材88の二股部分が、陽極ワイヤ12’における多孔質焼結体9’の近傍部分に嵌めこまれる。これにより、保持部材88に保持された液体材料8は、陽極ワイヤ12’および多孔質焼結体9’に付着する。この際に、液体材料8は多孔質焼結体9’に偏って付着することがある。また、多孔質焼結体9’の表面状態によって、多孔質焼結体9’における液体材料8の広がり方が異なる。
【0062】
次に、保持部材88を陽極ワイヤ12’から離間させる。これにより、液体材料8が陽極ワイヤ12’および多孔質焼結体9’に塗布された状態となる。次に、多孔質焼結体9’および陽極ワイヤ12’に液体材料8を塗布したのち数秒ほど経過すると、液体材料8中の液体成分が多孔質焼結体9’にしみ込む。このように、液体材料8を陽極ワイヤ12’に付着させる工程S21が行われる。
【0063】
液体材料8としては、たとえば、フッ素樹脂材料と導電性ポリマー材料とを溶媒に拡散させた材料を適用できる。フッ素樹脂材料は、たとえば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化エチレンプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、および、ポリビニリデンフルオライド(PVDF)よりなる群の少なくとも一つから選択される樹脂を含んでいてもよい。導電性ポリマーとしては、たとえば、ポリ(3,4−エチレンジオキシチオフェン)にポリスチレンスルホン酸をドーパントとしてドープした材質が挙げられる。溶媒は、水、有機溶剤等を上記の導電性ポリマーにあわせて選択することができる。
【0064】
次に、図15に示すように、加熱する工程S22が行われる。これにより、フッ素樹脂材料および導電性ポリマーが焼成され、撥水膜14が形成される。
この参考形態では、撥水膜14は、多孔質焼結体9’と陽極ワイヤ12’とに形成される。撥水膜14のうち多孔質焼結体9’に形成されるものは、第1膜状部141となる。撥水膜14のうち陽極ワイヤ12’に形成されるものは、第2膜状部142となる。第1膜状部141および第2膜状部142は、陽極ワイヤ12’に密着したものとなる。
【0065】
なお、撥水膜14の厚さをより厚くするために、撥水膜14を形成する工程S2を繰り返し行ってもよい。また、撥水膜14の厚さをより薄くするために、工程21において、液体材料8を希釈したものを陽極ワイヤ12’に塗布してもよい。
次に、誘電体層13を形成する工程S3が行われる。工程S3は、たとえば、多孔質焼結体9’をリン酸水溶液の化成液に漬けた状態で陽極酸化処理を施すことによって行われる。
【0066】
次に、図16に示すように、固体電解質層15を形成する工程S4が行われる。工程S4では、誘電体層13が形成された多孔質焼結体9が、水溶液87に浸漬される。
水溶液87は、たとえば、硝酸マンガンの水溶液、もしくは、導電性ポリマーの水溶液であってもよい。多孔質焼結体9を水溶液87に浸漬するとき、水溶液87の界面が撥水膜14を超えない位置関係とする。水溶液87は、撥水膜14との間に表面張力が生じ、撥水膜14には水溶液87は付着しない。仮に撥水膜14に水溶液87が一時的に付着しても、その後、多孔質焼結体9を水溶液87から引き揚げたときに、水溶液87は撥水膜14から流れ落ちる。多孔質焼結体9を水溶液87から引き揚げた後には、焼成処理が施される。多孔質焼結体9を水溶液87に浸漬し、その後、焼成処理を施す当該作業を繰り返すことによって、固体電解質層15を形成することができる。
【0067】
次に、図17に示すように、架橋剤を定着させる工程(架橋構造19を形成する工程)S5が行われる。工程S5では、固体電解質層15が形成された多孔質焼結体9が、水溶液20に浸漬される。
水溶液20は、たとえば、アルキルジアミン(エチレンジアミン等)等の架橋剤溶液であってもよい。上記架橋剤溶液の溶媒としては、水、有機溶剤等を上記の架橋剤の種類にあわせて選択することができる。多孔質焼結体9を水溶液20から引き揚げた後には、焼成処理が施される。これにより、固体電解質層15の表面に架橋剤が定着する。
【0068】
次に、図18に示すように、陰極層16を形成する工程S6が行われる。工程S5では、たとえば、固体電解質層15に架橋剤が定着した多孔質焼結体9が、グラファイト等の陰極材料が分散した溶液に浸漬され、乾燥(たとえば、室温乾燥)される。これにより、陰極層16が形成されるが、必要により、グラファイト層を形成した後、当該グラファイト層上に銀層を形成してもよい。以上の工程S1〜S6を経ることによって、コンデンサ素子21が製造される。
【0069】
次に、導電性接着層22を介して、陰極層16と陰極実装端子52とが接合される。また、たとえば溶接をすることによって、陽極ワイヤ12に、枕電極24および陽極実装端子51が接合される。そして、コンデンサ素子21を覆うように樹脂パッケージ23が、モールド成形される。以上の工程を経ることによって、図1に示す固体電解コンデンサA4を製造することができる。
【0070】
次に、固体電解コンデンサA4の作用について説明する。
この参考形態に係る固体電解コンデンサA4では、図12に示すように、固体電解質層15と陰極層16との間に架橋構造19が形成されている。これにより、固体電解質層15と陰極層16との密着性を向上させることができる。その結果、固体電解質層15と陰極層16との間に層間クラックが発生することを抑制することができるので、低ESR化を図ることができる。
【0071】
また、この参考形態に係る固体電解コンデンサA4では、撥水膜14は、撥水性と導電性とを有している。そのため、固体電解質層15と接する撥水膜14は、固体電解質層15と導通しており、陰極の一部として機能する。これにより、多孔質焼結体9の面9aが撥水膜14に覆われていても、この覆われた領域においてもコンデンサの機能を担う導通現象が確保される。その結果、撥水膜14を設けるにも関わらず、ESRが増大することを回避することが可能である。したがって、しみ上がりを抑制しつつ、低ESR化を図ることができる。
【0072】
また、この参考形態に係る固体電解コンデンサA4では、撥水膜14が導電性ポリマーを含むことによって、撥水膜14は、酸化剤として機能しうる。すなわち、誘電体層13に微小な亀裂や欠損があったとしても、撥水膜14から酸素が供給されることによって、弁作用金属がただちに酸化され、誘電体層13が修復される。したがって、漏れ電流の発生等を防止することができる。
【0073】
以上、本発明の実施形態および参考形態について説明したが、本発明は、他の形態で実施することもできる。
たとえば、前述の実施形態および参考形態では、多孔質焼結体1,9が固体電解コンデンサの陽極として構成されていたが、陰極として構成されていてもよい。この場合、陰極層4,16は、陽極層として構成されてもよい。
【0074】
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
また、前述の本発明の参考形態からは、以下の特徴を抽出することができる。
(項1)
第1の極を構成する導電性の多孔質焼結体と、前記多孔質焼結体上に形成された誘電体層と、前記誘電体層上に形成された固体電解質層と、前記固体電解質層上に形成された第2の極を構成する電極層とを含み、前記固体電解質層と前記電極層との間に架橋構造が形成されている、固体電解コンデンサ。
(項2)
前記固体電解質層および前記電極層は、ともに親水性の官能基を有する物質からなり、前記架橋構造は、前記親水性の官能基とアミンとの結合による架橋構造を含む、項1に記載の固体電解コンデンサ。
(項3)
前記固体電解質層は、前記親水性の官能基を有する導電性ポリマーを含み、前記電極層は、前記親水性の官能基を有するグラファイトを含む、項2に記載の固体電解コンデンサ。
(項4)
前記固体電解質層の前記親水性の官能基は、スルホン酸残基を含み、前記電極層の前記親水性の官能基は、カルボン酸残基を含む、項2または3に記載の固体電解コンデンサ。
(項5)
第1の極を構成する導電性の多孔質焼結体を形成する工程と、前記多孔質焼結体上に誘電体層を形成する工程と、前記誘電体層上に、親水性の官能基を有する固体電解質層を形成する工程と、前記固体電解質層上に親水性の架橋剤を塗布する工程と、前記架橋剤の塗布後、前記固体電解質層上に、親水性の官能基を有する第2の極を構成する電極層を形成する工程とを含む、固体電解コンデンサの製造方法。
(項6)
前記架橋剤は、アミノ基を有する架橋剤を含む、項5に記載の固体電解コンデンサの製造方法。
(項7)
前記固体電解質層は、前記親水性の官能基を有する導電性ポリマーを含み、前記電極層は、前記親水性の官能基を有するグラファイトを含む、項5または6に記載の固体電解コンデンサの製造方法。
(項8)
前記固体電解質層の前記親水性の官能基は、スルホン酸残基を含み、前記電極層の前記親水性の官能基は、カルボン酸残基を含む、項5〜7のいずれか一項に記載の固体電解コンデンサの製造方法。
【符号の説明】
【0075】
1 多孔質焼結体
2 誘電体層
3 固体電解質層
4 陰極層
31 内部電極層
32 外部電極層
32a 固体粒子含有層
32b 固体粒子
32c 有機材料部
32d 導電性ポリマー層
32e 結合構造
A1 固体電解コンデンサ
A2 固体電解コンデンサ
A3 固体電解コンデンサ
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
【図8】
【図9】
【図10】
【図11】
【図12】
【図13】
【図14】
【図15】
【図16】
【図17】
【図18】
【図19】