(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】2019146175
(43)【公開日】20190829
(54)【発明の名称】事前符号化補間を達成するために装置で実行される方法
(51)【国際特許分類】
   H04B 7/0456 20170101AFI20190802BHJP
   H04B 7/024 20170101ALI20190802BHJP
   H04B 7/06 20060101ALI20190802BHJP
   H04B 7/0452 20170101ALI20190802BHJP
   H04W 48/16 20090101ALI20190802BHJP
   H04W 16/28 20090101ALI20190802BHJP
【FI】
   !H04B7/0456 120
   !H04B7/024
   !H04B7/06 956
   !H04B7/06 100
   !H04B7/0452 100
   !H04W48/16 134
   !H04W16/28 130
【審査請求】有
【請求項の数】24
【出願形態】OL
【全頁数】59
(21)【出願番号】2019039195
(22)【出願日】20190305
(62)【分割の表示】2017240334の分割
【原出願日】20111031
(31)【優先権主張番号】12/917,257
(32)【優先日】20101101
(33)【優先権主張国】US
(71)【出願人】
【識別番号】506352393
【氏名又は名称】リアデン リミテッド ライアビリティ カンパニー
【住所又は居所】アメリカ合衆国 カリフォルニア州 94107 サンフランシスコ ブライアント ストリート 355 スイート 110
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100067013
【弁理士】
【氏名又は名称】大塚 文昭
(74)【代理人】
【識別番号】100086771
【弁理士】
【氏名又は名称】西島 孝喜
(74)【代理人】
【識別番号】100109335
【弁理士】
【氏名又は名称】上杉 浩
(74)【代理人】
【識別番号】100120525
【弁理士】
【氏名又は名称】近藤 直樹
(72)【発明者】
【氏名】フォレンツァ アントニオ
【住所又は居所】アメリカ合衆国 カリフォルニア州 94107 サンフランシスコ ブライアント ストリート 355 スイート 110
(72)【発明者】
【氏名】リンドスコグ エリク
【住所又は居所】アメリカ合衆国 カリフォルニア州 94107 サンフランシスコ ブライアント ストリート 355 スイート 110
(72)【発明者】
【氏名】パールマン スティーブン ジー
【住所又は居所】アメリカ合衆国 カリフォルニア州 94107 サンフランシスコ ブライアント ストリート 355 スイート 110
【テーマコード(参考)】
5K067
【Fターム(参考)】
5K067AA23
5K067AA41
5K067EE02
5K067EE10
5K067EE23
5K067KK03
(57)【要約】      (修正有)
【課題】事前符号化補間を達成するための装置で実行する方法を提供する。
【解決手段】マルチユーザ(MU)マルチアンテナシステム(MU−MAS)の複数のネットワークの各々は、ユーザデバイスの速度に関係した異なるネットワーク特徴を有しており、クライアントデバイスの推定された速度に基づいて、クライアントデバイスを該当するネットワークに割り当てる。ビームパルスフォーミングが無線リンクの受信機に使用される時に、重みは、干渉発生源の方向にヌルを生じるように計算される。ビームパルスフォーミングがマルチユーザダウンリンクシナリオで送信機に使用される時に、重みは、ユーザ間干渉を事前に相殺してあらゆるユーザに対してSINRを最大にするように計算される。BD事前符号化マルチユーザシステムの代替技術では、事前符号化重みを計算してダウンリンクブロードキャストチャンネル内の収量を最大にする。
【選択図】なし
【特許請求の範囲】
【請求項1】
マルチユーザ(MU)マルチアンテナシステム(MU−MAS)の複数のネットワーク内にあって、1つのセル又はカバーレッジエリアに渡って分散される複数の分散型アンテナ又はワイヤレス送受信機と複数のクライアントデバイスとの間の通信を調整するための機械実行方法であって、前記複数のネットワークの各々は、ユーザデバイスの速度に関係した異なるネットワーク特徴を有しており、
前記方法が、
前記複数の分散型アンテナと前記複数のクライアントデバイスとの間で無線周波数(RF)エネルギを送り、
前記分散型アンテナと前記クライアントデバイスとの間で、事前符号化を介して、同じ周波数バンド内で、複数の同時非干渉データストリームを生成し、
前記複数のクライアントの内の第1のクライアントデバイスの現在の速度を推定し、そして、
前記第1のクライアントデバイスの前記推定された速度に基づいて、前記複数のMU−MASネットワークの内の、第1のネットワーク特徴を有する第1のネットワークに前記第1のクライアントデバイスを割り当てることを含み、
前記複数のMU−MASネットワークが、少なくとも、第2のネットワーク特徴を有する第2のネットワークを含む、機械実行方法。
【請求項2】
前記RFエネルギが、ドップラーシフトを推定することによって、前記第1のクライアントデバイスに対する前記現在の速度を推定するために使用される請求項1記載の方法。
【請求項3】
前記ドップラーシフトが、前記アンテナから前記第1のクライアントデバイスへ、そして、前記アンテナに反射されて戻される前記RFエネルギを用いるブラインド推定技術を使用して、計算される請求項2記載の方法。
【請求項4】
前記RFエネルギが、トレーニング信号からなり、前記ドップラーシフトが前記トレーニング信号を使用して、計算される請求項2記載の方法。
【請求項5】
前記第1のクライアントデバイスの速度が特定の閾値を上回る場合、前記第1のクライアントデバイスを、高速クライアントデバイスと通信する第1のMU−MASネットワークに割り当て、前記第1のクライアントデバイスの速度が前記特定の閾値を下回る場合、前記第1のクライアントデバイスを、第2のMU−MASネットワークに割り当てる、請求項1記載の方法。
【請求項6】
前記第1のMU−MASネットワークが、第1の平均待ち時間を有するBTSネットワークを介する複数のベースステーション(BTS)からなり、前記第2のMU−MASネットワークが、第2の平均待ち時間を有するBTSネットワークを介する複数のベースステーション(BTS)からなり、前記第2の平均待ち時間が前記第1の平均待ち時間よりも低い、請求項5記載の方法。
【請求項7】
干渉MU−MASクラスター内の前記分散型アンテナの1つ以上において、MU−MASクラスター間干渉相殺でMU−MAS事前符号化を実行し、前記第1のクライアントデバイスの位置でゼロRFエネルギを生成する請求項1記載の方法。
【請求項8】
前記干渉MU−MASクラスター内のM個の分散型送信アンテナが、(M−1)個までのゼロRFエネルギを生成する、請求項7記載の方法。
【請求項9】
前記MU−MASが、前記分散型アンテナと前記クライアントデバイスとの間のチャンネル状態情報を知っており、前記MU−MASが、前記チャンネル状態情報を利用して、同時に送信されるべき複数の干渉信号を決定する、請求項7記載の方法。
【請求項10】
前記ゼロRFエネルギがブロック対角化事前符号化を使用する、請求項9記載の方法。
【請求項11】
前記MU−MASが、アンテナの部分集合からなり、前記MU−MASが、前記第1のクライアントデバイスを前記アンテナの部分集合に割り当てるためのアンテナ選択を採用する請求項1記載の方法。
【請求項12】
前記異なるネットワーク特徴が、前記複数のMU−MASネットワークの各々と関連する待ち時間を含む、請求項1記載の方法。
【請求項13】
1つのセル又はカバーレッジエリアに渡って分散される複数の分散型アンテナ又はワイヤレス送受信機と複数のクライアントデバイスとの間の通信を調整するための、複数のマルチユーザ(MU)マルチアンテナシステム(MU−MAS)ネットワークであって、前記複数のネットワークの各々が、ユーザデバイスの速度に関係した異なるネットワーク特徴を有し、
前記複数の分散型アンテナと前記複数のクライアントデバイスとの間で無線周波数(RF)エネルギを送るための、前記MU−MASネットワークの無線周波数(RF)送信機、
前記分散型アンテナと前記クライアントデバイスとの間で、事前符号化を介して、同じ周波数バンド内で複数の同時非干渉データストリームを生成する論理回路、及び
第1のクライアントデバイスの現在の速度を推定するための動作を達成するように構成された、前記複数のクライアントデバイスの少なくとも1つのクライアントデバイス又は前記MU−MASネットワークの1つ以上の分散型アンテナ、から構成され、
前記第1のクライアントデバイスが、前記複数のMU−MASネットワークの内の、前記第1のクライアントデバイスの前記推定された速度に基づいた第1のネットワーク特徴を有する特定のものに割り当てられており、前記複数のMU−MASネットワークが、少なくとも、第2のネットワーク特性を有する第2のネットワークを含む、システム。
【請求項14】
前記RFエネルギが、ドップラーシフトを推定することにより、前記第1のクライアントデバイスに対する現在の速度を推定するために使用される、請求項13記載のシステム。
【請求項15】
前記ドップラーシフトが、前記アンテナから前記第1のクライアントデバイスへ、そして、前記アンテナに反射されて戻される前記RFエネルギを用いるブラインド推定技術を使用して、計算される請求項14記載のシステム。
【請求項16】
前記RFエネルギが、トレーニング信号からなり、前記ドップラーシフトが前記トレーニング信号を使用して、計算される請求項14記載のシステム。
【請求項17】
前記第1のクライアントデバイスの速度が特定の閾値を上回る場合、前記第1のクライアントデバイスを、高速クライアントデバイスと通信する第1のMU−MASネットワークに割り当て、前記第1のクライアントデバイスの速度が前記特定の閾値を下回る場合、前記第1のクライアントデバイスを、第2のMU−MASネットワークに割り当てる、請求項13記載のシステム。
【請求項18】
前記第1のMU−MASネットワークが、第1の平均待ち時間を有するBTSネットワークを介する複数のベースステーション(BTS)からなり、前記第2のMU−MASネットワークが、第2の平均待ち時間を有するBTSネットワークを介する複数のベースステーション(BTS)からなり、前記第2の平均待ち時間が前記第1の平均待ち時間よりも短い、請求項17記載のシステム。
【請求項19】
干渉MU−MASクラスター内の前記分散型アンテナの1つ以上において、MU−MASクラスター間干渉相殺でMU−MAS事前符号化を実行し、前記第1のクライアントデバイスの位置でゼロRFエネルギを生成する請求項13記載のシステム。
【請求項20】
前記干渉MU−MASクラスター内のM個の分散型送信アンテナが、(M−1)個までのゼロRFエネルギを生成する、請求項19記載のシステム。
【請求項21】
前記BTSが、前記分散型アンテナと前記クライアントデバイスとの間のチャンネル状態情報を知っており、前記BTSが、前記チャンネル状態情報を利用して、同時に送信されるべき複数の干渉信号を決定する、請求項19記載のシステム。
【請求項22】
前記ゼロRFエネルギがブロック対角化事前符号化を使用する、請求項21記載のシステム。
【請求項23】
前記MU−MASが、アンテナの部分集合からなり、前記MU−MASが、前記第1のクライアントデバイスを前記アンテナの部分集合に割り当てるためのアンテナ選択を採用する請求項13記載のシステム。
【請求項24】
前記異なるネットワーク特徴が、前記複数のMU−MASネットワークの各々と関連する待ち時間を含む、請求項13記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
〔関連出願〕
本出願は、以下の現在特許出願中の米国特許出願の一部継続出願である。
【0002】
2010年6月16日出願の「干渉管理、ハンドオフ、電力制御、及び分散入力分散出力(DIDO)通信システム内のリンクアダプテーション」という名称の米国特許出願出願番号第12/802,988号。
【0003】
2010年6月16日出願の「信号強度測定値に基づいてDIDO干渉相殺を調整するシステム及び方法」という名称の米国特許出願出願番号第12/802,976号。
【0004】
2010年6月16日出願の「複数のDIDOクラスターを横断するクライアントのクラスター間ハンドオフを管理するシステム及び方法」という名称の米国特許出願出願番号第12/802,974号。
【0005】
2010年6月16日出願の「クライアントの検出された速度に基づいて異なる分散入力分散出力(DIDO)ネットワーク間のクライアントハンドオフを管理するシステム及び方法」という名称の米国特許出願出願番号第12/802,989号。
【0006】
2010年6月16日出願の「分散入力分散出力(DIDO)ネットワーク内の電力制御及びアンテナグループ分けのシステム及び方法」という名称の米国特許出願出願番号第12/802,958号。
【0007】
2010年6月16日出願の「DIDOマルチキャリアシステム内のリンクアダプテーションのシステム及び方法」という名称の米国特許出願出願番号第12/802,975号。
【0008】
2010年6月16日出願の「マルチキャリアシステム内のDIDO事前符号化補間のシステム及び方法」という名称の米国特許出願出願番号第12/802,938号。
【0009】
2009年12月3日出願の「分散型アンテナ無線通信のシステム及び方法」という名称の米国特許出願出願番号第12/630,627号。
【0010】
2008年6月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許出願出願番号第12/143,503号。
【0011】
2007年8月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許出願出願番号第11/894,394号。
【0012】
2007年8月20日出願の「分散入力分散型無線通信のシステム及び方法」という名称の米国特許出願出願番号第11/894,362号。
【0013】
2007年8月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許出願出願番号第11/894,540号。
【0014】
2005年10月21日出願の「空間多重化対流圏散乱通信のシステム及び方法」という名称の米国特許出願出願番号第11/256,478号。
【0015】
2004年4月2日出願の「空時符号化を使用して近垂直入射電離層波(「NVIS」)通信を強化するシステム及び方法」という名称の米国特許出願出願番号第10/817,731号。
【背景技術】
【0016】
従来技術のマルチユーザ無線システムは、単一の基地局のみ又はいくつかの基地局を含むことができる。
【0017】
他に全くWiFiアクセスポイント(例えば、田舎の一般家庭のDSLに取り付けられたWiFiアクセスポイント)がないエリア内の広帯域有線インターネット接続部に付設された単一のWiFi基地局(例えば、2.4GHz802.11b、g、又はnプロトコルを利用する)は、その送信範囲にいる1人又はそれよりも多くのユーザによって共用される単一の基地局である比較的単一のマルチユーザ無線システムの例である。ユーザが無線アクセスポイントと同じ部屋にいる場合に、ユーザが受けるのは、典型的には、殆ど通信途絶がない高速リンクである(例えば、電子レンジと同様に、2.4GHz干渉からであるが他のWiFiデバイスと共用するスペクトルからではないパケット損失がある場合がある)。ユーザが中程度の距離を隔てている場合に、又はいくつかの障害物がユーザとWiFiアクセスポイント間の経路内にあると、ユーザが受けるのは、恐らく中速度のリンクになる。ユーザがWiFiアクセスポイント範囲の端に接近している場合に、ユーザが受けるのは、恐らく低速リンクになり、チャンネル変更により、結果として、信号SNRが使用可能なレベルを下回れば周期的なドロップアウトを受けやすくなる場合がある。最後に、ユーザがWiFi基地局の範囲を超えている場合に、ユーザには全くリンクがなくなる。
【0018】
複数のユーザが同時にWiFi基地局にアクセスした時に、利用可能なデータ収量は、複数のユーザ間で共用される。ユーザが異なれば、典型的には、所定の時間に異なる収量要求をWiFi基地局にすることになるが、総収量要求がWiFi基地局からユーザまでの利用可能な収量を上った時に、一部又は全てのユーザは、受けるデータ収量が求めているものよりも少なくなる。WiFiアクセスポイントが非常に多くのユーザ間で共用される極端な状況では、各ユーザへの収量は、速度が遅くなる可能性もあり、更に悪いことに、各ユーザへのデータ収量は、全て、データ収量がない長い期間により分離された短時間バーストで到着する場合があり、その間は、他のユーザへの対応は行われている。媒体ストリーミングと同様に、この「途切れ途切れの」データ配信は、ある一定の用途を損なう場合がある。
【0019】
多くのユーザがいる状況でWiFi基地局を更に増設しても、その効果は、単にある一定の点までのものになることになる。米国の2.4GHzISM帯域内では、WiFiに使用することができる非干渉チャンネルが3つあり、同じカバレージエリア内の3つのWiFi基地局が各々異なる非干渉チャンネルを使用するように構成された場合に、複数のユーザ間のカバレージエリアの総収量は、最大3倍まで増大することになる。しかし、それよりも大きいと、同じカバレージエリアでWiFi基地局を増設しても、総収量は増大せず、その理由は、「交替で」スペクトルを使用することによって時分割多重アクセス(TDMA)を利用し、同じ利用可能なスペクトルをWiFi基地局間で共用し始めることになるからである。この状況は、集合住宅内のような人口密度が高いカバレージエリアで見られることが多い。例えば、たとえユーザのアクセスポイントが基地局にアクセスしているクライアントデバイスと同じ部屋にあっても、WiFiアダプタがある大きいアパートにいるユーザは、同じカバレージエリア内にいる他のユーザにサービスを提供する何十もの他の干渉中のWiFiネットワーク(例えば、他のアパート)のために非常に不良な収量を受ける恐れが十分にある。リンク品質はその状況では良好である可能性が高いが、ユーザは、同じ周波数帯域内で作動している隣接WiFiアダプタからの干渉を受けることになり、ユーザへの有効収量が低減する。
【0020】
WiFiのような未認可スペクトル及び認可スペクトルを含む現在のマルチユーザ無線システムには、いくつかの制限がある。これらには、カバレージエリア、ダウンリンク(DL)データ転送速度、及びアップリンク(UL)データ転送速度がある。次世代無線システム(WiMax及びLTEのような)の重要な目標は、多重入力多重出力(MIMO)技術を通じてカバレージエリア及びDL及びULデータ転送速度を改善することである。MIMOでは、リンク品質(結果として受信可能範囲の拡大)又はデータ転送速度(あらゆるユーザに複数の非干渉空間チャンネルを作成することにより)を改善するために複数のアンテナを無線リンクの送信側及び受信側で使用する。しかし、十分なデータ転送速度があらゆるユーザに利用可能な場合(注:「ユーザ」及び「クライアント」という用語を本明細書では交換可能に使用する)、マルチユーザMIMO(MU−MIMO)法に従って複数のユーザ(単一のユーザではなく)に非干渉チャンネルを作成するためにチャンネル空間ダイバーシティを利用することが望ましいであろう。例えば、以下の参考文献を参照されたい。
【0021】
G.Caire及びS.Shamai共著「多アンテナガウスブロードキャストチャンネルの達成可能な収量に関して」、情報理論に関するIEEE論文集、第49巻、1691〜1706頁、2003年7月。
【0022】
P.Viswanath及びD.Tse共著「ベクトルガウスブロードキャストチャンネル及びアップリンク−ダウンリンク二重性の合計容量」、情報理論に関するIEEE論文集、第49巻、1912〜1921頁、2003年8月。
【0023】
S.Vishwanath、N.Jindal、及びA.Goldsmith共著「二重性、達成可能な速度、及びガウスMIMOブロードキャストチャンネルの合計転送速度容量」、情報理論に関するIEEE論文集、第49巻、2658〜2668頁、2003年10月。
【0024】
W.Yu及びJ.Cioffi共著「ガウスベクトルブロードキャストチャンネルの合計容量」、情報理論に関するIEEE論文集、第50巻、1875〜1892頁、2004年9月。
【0025】
M.Costa著「ダーティーペーパーへの書込み」、情報理論に関するIEEE論文集、第29巻、439〜441頁、1983年5月。
【0026】
M.Bengtsson著「マルチユーザ空間多重化の実際的な手法」、センサアレイ講演論文集及びマルチチャンネル信号処理研究会、130〜134頁、2002年8月。
【0027】
K.−K.Wong、R.D.Murch、及びK.B.Letaief共著「マルチユーザMIMO無線通信システムの性能強化」、通信に関するIEEE論文集、第50巻、1960〜1970頁、2002年12月。
【0028】
M.Sharif、B.Hassibi共著「部分サイド情報によるMIMOブロードキャストチャンネルの機能に関して」、情報理論に関するIEEE論文集、第51巻、506〜522頁、2005年2月。
【発明の概要】
【発明が解決しようとする課題】
【0029】
例えば、MIMO 4x4システム(すなわち、4つの送信アンテナ及び4つの受信アンテナ)、10MHz帯域幅、16−QAM変調速度3/4(3bps/Hzの周波数利用効率が得られる)による及び前進型誤信号訂正(FEC)符号化)では、あらゆるユーザに対して物理層で達成可能な理想的なピークデータ転送速度は、4x30Mbps=120Mbpsであり、これは、高解像度映像コンテンツ(〜10Mbpsのみを必要とすると考えられる)を配信するのに必要とされるピークデータ転送速度より遥かに高い。理想的なシナリオ(すなわち、独立同分布、i.i.d.チャンネル)において4つの送信アンテナ、4人のユーザ、及びユーザ当たりに単一のアンテナを有するMU−MIMOシステムでは、ダウンリンクデータ転送速度は、4人のユーザにわたって共用することができ、チャンネル空間ダイバーシティを利用してユーザに4つの並行した30Mbpsのデータリンクを作成することができる。例えば、3GPP、「UTRAにおける多重入力多重出力」、3GPP TR 25.876 V7.0.0、2007年3月、3GPP、「ベース物理チャンネル及び変調」、TS 36.211、V8.7.0、2009年5月、及び3GPP、「多重化及びチャンネル符号化」、TS 36.212、V8.7.0、20095月に説明されているように、異なるMU−MIMO方式が、LTE規格の一部として提案されている。しかし、これらの方式は、DLにおいて、4つの送信アンテナでデータ転送速度は最大2倍までの改善しか得ることができない。ArrayComm(例えば、ArrayComm、「フィールド確証結果」、http://www.arraycomm.com/serve.php?page=proofを参照されたい)のような会社による標準的かつ固有開発のセルラーシステム内のMU−MIMO法の実際的な例では、空間分割多重アクセス(SDMA)を通じてDLデータ転送速度は最大3倍までの増大が得られている(4つの送信アンテナで)。携帯電話ネットワークにおけるMU−MIMO方式の重要な限界は、送信側での空間ダイバーシティの欠如である。空間ダイバーシティは、アンテナ間隔の関数及び無線リンクにおける多経路角度広がりである。MU−MIMO法を使用するセルラーシステムでは、基地局での送信アンテナは、典型的には、共にクラスター化され、かつアンテナ支持物構造体(「塔」と本明細書で呼ぶ、物理的に高いか否かに関わらず)上の限られた土地建物のために、及び塔を位置付けることができる場所に関する制限のために1つ又は2つの波長のみを隔てて設けられる。更に、多経路角度広がりは低く、その理由は、携帯電波塔が、典型的には、受信可能範囲の拡大が得られるように障害物よりもかなり高い所で設けられているからである(10メートル又はそれよりも高く)。
【0030】
セルラーシステム配置による他の実際的な問題には、セルラーアンテナロケーションに関するロケーションの過剰な経費及び限られた利用可能性(例えば、アンテナ配置、土地建物費、物理的障害物などに関する地方自治体の制限のために)、並びに送信機とのネットワーク接続性のコスト及び/又は利用可能性(「バックホール」と本明細書で呼ぶ)がある。更に、セルラーシステムは、壁、天井、床、備品、及び他の妨害物による損失のために建物の奥にあるクライアントに到達することが困難であることが多い。
【0031】
実際、広域ネットワーク無線のためのセル構造の全体的な概念は、携帯電波塔のかなり強固な配置、隣接したセル間の周波数の交替、及び同じ周波数を使用している送信機(基地局又はユーザ)間の干渉を回避するように頻繁なセクター化を前提とする。その結果、所定のセルの所定のセクターは、結局セルセクター内のユーザの全ての間のUL及びDLスペクトルのブロックの共用に終わり、セルセクターは、次に、主として時間領域においてこれらのユーザ間で共用される。例えば、時分割多重アクセス(TDMA)及び符号分割多重アクセス(CDMA)に基づくセルラーシステムは、両方とも、時間領域においてユーザ間にスペクトルを共用する。セクター化でこのようなセルラーシステムを重ね合わせることにより、恐らくは、2〜3倍の空間領域利点をもたらすことができる。次に、上述したようなMU−MIMOシステムとこのようなセルラーシステムを重ね合わせることにより、恐らくは、更に2〜3倍の時空間領域の利点をもたらすことができる。しかし、セルラーシステムのセル及びセクターが典型的には塔をどこに設けることができるかにより指定されることが多い固定ロケーションにあることを考慮すると、このような限られた利点でさえも所定の時間のユーザ密度(又はデータ転送速度要求)は、塔/セクター配置の良好に適合しなかった場合は利用し難くなる。携帯スマートフォンユーザは、今日、この影響力を受けることが多く、ユーザは、全くトラブルなく電話で話しているか、又はウェブページをダウンロードしている可能性があり、次に、新しいロケーションに車で(又は歩いて)移動した後に声質が落ちたり、又はウェブページの速度が落ちたり、又は完全に接続を失うことさえ突然に目の当たりにすることになる。しかし、日が変わると、ユーザは、各々のロケーションで正反対のことが発生する可能性がある。環境条件が同じであると仮定し、ユーザが恐らく体験しているのは、ユーザ密度(又はデータ転送速度要求)が非常に変化することである。しかし、所定のロケーションでユーザ間で共用すべき利用可能な全スペクトル(及びそれによって従来技術を使用して全データ転送速度)は、主に固定である。
【0032】
更に、従来技術のセルラーシステムは、異なる隣接したセルにおいて異なる周波数、典型的には3つの異なる周波数を使用することに依存する。所定の量のスペクトルに対して、それによって利用可能なデータ転送速度が3倍低減される。
【0033】
従って、要約すると、従来技術のセルラーシステムは、セル化のためにスペクトル利用の恐らく3倍を失う可能性があり、かつセクター化を通じて恐らく3倍、MU−MIMO法を通じて恐らく更に3倍スペクトル利用を改善することができ、結果として正味3*3/3=3倍の潜在的なスペクトル利用になる。次に、その帯域幅は、ユーザが所定の時間にどのセルのどのセクターに該当するかに基づいて典型的には時間領域においてユーザ間に分割される。所定のユーザのデータ転送速度要求が典型的にユーザのロケーションとは独立しているために生じる更に別の非効率さえ存在するが、利用可能なデータ転送速度は、ユーザと基地局の間のリンク品質に基づいて変動する。例えば、セルラー基地局から遠いユーザは、典型的に、利用可能なデータ転送速度が基地局に近いユーザよりも少なくなる。データ転送速度は、典型的に所定のセルラーセクター内のユーザの全ての間で共用されるので、この結果、全てのユーザは、不良なリンク品質(例えば、セルの端での)で遠くのユーザからの高いデータ転送速度要求の影響を受け、その理由は、このようなユーザは、依然として同量のデータ転送速度を依然として要求することになり、しかも、同量のデータ転送速度を得るためで共用スペクトルのより多くの量を消費していることになるからである。
【0034】
WiFi(例えば、802.11b、g、及びn)によって使用されるもの及びホワイトスペース連合により提案されたもののような他の提案されたスペクトル共用システムは、スペクトル共用が非常に非効率的であり、その理由は、ユーザの範囲で基地局による同時送信により結果として干渉が発生し、従って、システムは、衝突防止及び共用プロトコルを利用しているからである。これらのスペクトル共用プロトコルは、時間領域内にあり、従って、多くの干渉中の基地局及びユーザが存在する時に、各基地局自体のスペクトル利用がどのように効率的であろうとも、集合的に、基地局は、互いの間のスペクトルの時間領域共用に限定される。他の従来技術のスペクトル共用システムも、同様に、基地局間の干渉を緩和する類似の方法に依存する(塔上のアンテナを有するセルラー基地局又は小規模基地局(WiFiアクセスポイント(AP)のような)である場合)。これらの方法には、干渉の範囲を制限するように行う基地局からの送信電力の制限、干渉エリアを狭域化するビームパルスフォーミング(合成又は物理手段を通じて)、スペクトルの時間領域多重化、及び/又はユーザデバイス、基地局、又は両方の上の複数のクラスター化されたアンテナによるMU−MIMO法がある。すでにあるか又は今日計画されている高度の携帯電話ネットワークの場合には、これらの技術の多くは、一度に使用されることが多い。
【0035】
しかし、高度のセルラーシステムでさえも、スペクトルを利用する単一のユーザと比較するとスペクトル利用を約3倍しか増加させることはできないことによって明らかであることは、これらの技術の全ては、受信可能範囲の所定のエリアに向けて共用ユーザ間に総データ転送速度を増大させるのに殆ど役に立っていないという点である。特に、所定のカバレージエリアがユーザの観点から拡大する時に、ユーザの成長と足並みをそろえるために、所定の量のスペクトル内の利用可能なデータ転送速度を拡大することが益々困難になる。例えば、セルラーシステムに関して所定のエリア内の総データ転送速度を増大させるために、典型的には、セルは、より小さいセル(ナノセル又はフェムトセルということが多い)に小分けされる。このような小セルは、「不感帯」が最小限の受信可能範囲をもたらし、更には、同じ周波数を使用する近くのセル間の干渉を回避するように塔を設定することができるロケーションに関する制限、及び塔を公平に構成されたパターンで配置すべきである要件を考慮すると極めて高価になる可能性がある。本質的に、カバレージエリアを細かく計画しなければならず、塔又は基地局を設ける利用可能なロケーションを識別しなければならず、次に、これらの制約を前提として、セルラーシステムの設計者は、自分たちが可能な最良のもので間に合わせなければならない。言うまでもなく、ユーザデータ転送速度要求が時間と共に増大することは、セルラーシステムの設計者は、カバレージエリアを再びリマップし、塔又は基地局のロケーションを見つけるように努め、かつもう一度状況の制約に対処すべきである。非常に多くの場合に、単に良好な解決法がなく、結果として、不感帯が発生するか、又はカバレージエリア内の総データ転送速度容量が不適切になる。換言すると、同じ周波数を利用する塔又は基地局間の干渉を回避するセルラーシステムの強固な物理配置要件により、セルラーシステム設計において有意な問題点及び制約が生じ、これらの要件は、多くの場合にユーザデータ転送速度及び受信可能範囲要件を満たすことができない。
【0036】
いわゆる従来技術の「協調」無線システム及び「認識」無線システムは、互いの干渉を最小にすることができるように、及び/又はチャンネルが空くまで待つように、他のスペクトルの使用がないか潜在的に「耳を澄ます」ことができるように無線内で知的アルゴリズムを使用することによって所定のエリア内のスペクトル利用を増大にしようとする。このようなスペクトルのスペクトル利用を増大させるように未認可スペクトルで特に使用されるようなシステムが提案されている。
【0037】
モバイルアドホックネットワーク(MANET)(http://en.wikipedia.org/wiki/Mobile_ad_hoc_networkを参照されたい)は、ピアツーピア通信をもたらすことを目的とした協調自己構成型ネットワークの例であり、かつ携帯電話インフラなしで無線間の通信を確立するのに使用することができ、十分に低電力の通信で、互いの範囲外にある同時送信間の干渉を潜在的に緩和することができる。非常に多くの経路指定プロトコルがMANETシステムに向けて提案されて実行されたが(広範囲にわたるクラスの何十もの経路指定プロトコルのリストに対して、http://en.wikipedia.org/wiki/List_of_ad−hoc_routing_protocolsを参照されたい)、経路指定プロトコル間の共通のテーマは、それらが所定の効率又は信頼性パラダイムという目標に向けて利用可能なスペクトル内の送信機干渉を最小にするように送信を経路指定する(例えば、繰り返す)全ての技術であることである。
【0038】
従来技術のマルチユーザ無線システムの全ては、基地局及び複数のユーザ間の同時のスペクトル利用を可能にする技術を利用することによって所定のカバレージエリア内のスペクトル利用を改善しようとする。特に、これらの場合の全てにおいて,基地局及び複数のユーザ間の同時のスペクトル利用に利用される技術は、複数のユーザに対する波形間の干渉を緩和することによって複数のユーザによる同時スペクトル使用をもたらす。例えば、3人のうちの1人に送信するために各々異なる周波数を使用する3つの基地局の場合には、干渉は、3つの送信が3つの異なる周波数であるので緩和される。3つの異なるユーザへの基地局からのセクター化の場合に、基地局に対して各々180°間隔で干渉は緩和され、その理由は、ビームパルスフォーミングにより、3つの送信がユーザで重なり合うのが防止されるからである。
【0039】
このような技術がMU−MIMOで増大され、かつ例えば各基地局が4つのアンテナを有する時に、これは、所定のカバレージエリア内のユーザに対して4つの非干渉空間チャンネルを作成することによって4倍ダウンリンク収量を増大させる可能性があるが、依然として何らかの技術を利用し、異なる受信可能範囲エリア内の複数のユーザに対する複数の同時送信間の干渉を緩和すべきであることが該当する。
【0040】
上述のように、このような従来技術(例えば、セル化、セクター化)には、典型的にマルチユーザ無線システムの経費及び/又は配置柔軟性の増大が問題点としてあるのみならず、典型的に所定のカバレージエリア内の総収量の物理的又は実際的な制限が問題点として存在する。例えば、セルラーシステムには、小セル化を行うために基地局の配置数を増すのに十分な利用可能なロケーションがない場合がある。MU−MIMOシステムは、各基地局ロケーションでのクラスター化されたアンテナの間隔を考慮すると、限られた空間ダイバーシティにより、基地局に増設されるアンテナが増加する時に収量の収益が漸近的に減少する。
【0041】
更に、ユーザ位置及び密度が予想できないマルチユーザ無線システムの場合に、限られた空間ダイバーシティにより、収量が予想できず(周波数の急激な変化で)、これは、ユーザには不便であり、一部の用途(例えば、予想可能な収量を必要とするサービスの配信)が非実用的又は低品質になる。従って、従来技術のマルチユーザ無線システムには、ユーザに予想可能な及び/又は高品質のサービスを提供する機能の観点からまだ不満な点が多い。
【0042】
時間と共に従来技術のマルチユーザ無線システムに向けて開発された驚異的な強化及び複雑性にも関わらず、送信が、異なる基地局(又はアドホック送受信機)に配信され、かつ異なる基地局及び/又は異なるアドホック送受信機からのRF波形伝送特定のユーザの受信機で互いに干渉するのを回避するように構成及び/又は制御されるという共通のテーマが存在する。
【0043】
あるいは、別の言い方をすると、ユーザが偶然に同時に1つよりも多い基地局又はアドホック送受信機から送信を受信したとすると、複数の同時送信からの干渉により、ユーザへの信号のSNR及び/又は帯域幅の低減が発生することになり、その結果、十分に厳しい場合には、十分に厳しくない場合にユーザによって受信されていたと思われる潜在的なデータ(又はアナログ情報)の全て又は一部の損失が発生することになる。
【0044】
従って、マルチユーザ無線システムは、1つ又はそれよりも多くのスペクトル共用手法又は別のスペクトル共用手法を利用して同時に同じ周波数で送信する複数の基地局又はアドホック送受信機からのユーザへのこのような干渉を回避又は緩和することが必要である。基地局の物理的位置(例えば、セル化)の制御、基地局及び/又はアドホック送受信機の電力出力の制限(例えば、送信範囲の制限)、ビームパルスフォーミング/セクター化、及び時間領域多重化を含むこのような干渉を回避する従来技術の手法は非常に多い。すなわち、これらのスペクトル共用システムの全ては、同時に同じ周波数で送信する複数の基地局及び/又はアドホック送受信機が同じユーザによって受信した時に得られる干渉により影響を受けたユーザに対するデータ収量が低減又は破壊されるマルチユーザ無線システムの限界に対処しようとする。マルチユーザ無線システム内のユーザの殆ど又は全てが複数の基地局及び/又はアドホック送受信機からの干渉を受けた(例えば、マルチユーザ無線システムの構成要素の誤作動の場合)場合に、マルチユーザ無線システムの総収量が激減するか又は機能しなくなる状況が発生する可能性がある。
【0045】
従来技術のマルチユーザ無線システムは、複雑性を追加し、かつ無線ネットワークへの制限を招き、従って、多くの場合に、所定のユーザの体験(例えば、利用可能な帯域、待ち時間、予想性、信頼性)がエリア内の他のユーザによるスペクトルの利用により影響を受ける状況が発生する。複数のユーザによって共用される無線スペクトル内の総帯域幅に対する増加する要求、及び所定のユーザに向けてマルチユーザ無線ネットワーク信頼性、予想性、及び低い待ち時間に依存する可能性がある用途の増加する成長を考慮すると、従来技術のマルチユーザ無線技術には多くの制限が問題点としてあることが明らかである。実際、所定のタイプの無線通信(例えば、建物壁を通過する際に効率的である波長での)に適するスペクトルの限られた利用可能性のために、従来技術の無線技術は、信頼性が高くて、予想可能で、待ち時間が短い帯域幅に対する需要の増大を満たすには不十分であることが該当する可能性がある。
【課題を解決するための手段】
【0046】
本発明に関連する従来技術では、マルチユーザシナリオにおいてヌルステアリングのためのビームパルスフォーミングシステム及び方法が説明されている。ビームパルスフォーミングは、本来は、アレイのアンテナに供給される信号の位相及び/又は振幅を動的に調整することによって(すなわち、ビームパルスフォーミング重み)、受信信号対ノイズ比(SNR)を最大にし、従って、ユーザ方向に向けてエネルギが集中されるように考えられている。マルチユーザシナリオでは、ビームパルスフォーミングを使用し、干渉発生源を抑止して信号対干渉ノイズ比(SINR)を最大にすることができる。例えば、ビームパルスフォーミングが無線リンクの受信機に使用される時に、重みは、干渉発生源の方向にヌルを生じるように計算される。ビームパルスフォーミングがマルチユーザダウンリンクシナリオで送信機に使用される時に、重みは、ユーザ間干渉を事前に相殺してあらゆるユーザに対してSINRを最大にするように計算される。BD事前符号化マルチユーザシステムの代替技術では、事前符号化重みを計算してダウンリンクブロードキャストチャンネル内の収量を最大にする。引用により本明細書に組み込まれている現在特許出願中の出願は、上述の技術を説明している(特定の引用に対して現在特許出願中の出願を参照されたい)。
【0047】
図面に関連の以下の詳細説明から本発明をより深く理解することができる。
【先行技術文献】
【特許文献】
【0048】
【特許文献1】米国特許出願出願番号第12/802,988号明細書
【特許文献2】米国特許出願出願番号第12/802,976号明細書
【特許文献3】米国特許出願出願番号第12/802,974号明細書
【特許文献4】米国特許出願出願番号第12/802,989号明細書
【特許文献5】米国特許出願出願番号第12/802,958号明細書
【特許文献6】米国特許出願出願番号第12/802,975号明細書
【特許文献7】米国特許出願出願番号第12/802,938号明細書
【特許文献8】米国特許出願出願番号第12/630,627号明細書
【特許文献9】米国特許第7,599,420号明細書
【特許文献10】米国特許第7,633,994号明細書
【特許文献11】米国特許第7,636,381号明細書
【特許文献12】米国特許出願出願番号第12/143,503号明細書
【特許文献13】米国特許出願出願番号第11/256,478号明細書
【特許文献14】米国特許第7,418,053号明細書
【特許文献15】米国特許出願出願番号第10/817,731号明細書
【特許文献16】米国特許第4,003,016号明細書
【特許文献17】米国特許第4,771,289号明細書
【特許文献18】米国特許第5,600,326号明細書
【非特許文献】
【0049】
【非特許文献1】G.Caire及びS.Shamai共著「多アンテナガウスブロードキャストチャンネルの達成可能な収量に関して」、情報理論に関するIEEE論文集、第49巻、1691〜1706頁、2003年7月
【非特許文献2】P.Viswanath及びD.Tse共著「ベクトルガウスブロードキャストチャンネル及びアップリンク−ダウンリンク二重性の合計容量」、情報理論に関するIEEE論文集、第49巻、1912〜1921頁、2003年8月
【非特許文献3】S.Vishwanath、N.Jindal、及びA.Goldsmith共著「二重性、達成可能な速度、及びガウスMIMOブロードキャストチャンネルの合計転送速度容量」、情報理論に関するIEEE論文集、第49巻、2658〜2668頁、2003年10月
【非特許文献4】W.Yu及びJ.Cioffi共著「ガウスベクトルブロードキャストチャンネルの合計容量」、情報理論に関するIEEE論文集、第50巻、1875〜1892頁、2004年9月
【非特許文献5】M.Costa著「ダーティーペーパーへの書込み」、情報理論に関するIEEE論文集、第29巻、439〜441頁、1983年5月
【非特許文献6】M.Bengtsson著「マルチユーザ空間多重化の実際的な手法」、センサアレイ講演論文集及びマルチチャンネル信号処理研究会、130〜134頁、2002年8月
【非特許文献7】K.−K.Wong、R.D.Murch、及びK.B.Letaief共著「マルチユーザMIMO無線通信システムの性能強化」、通信に関するIEEE論文集、第50巻、1960〜1970頁、2002年12月
【非特許文献8】M.Sharif、B.Hassibi共著「部分サイド情報によるMIMOブロードキャストチャンネルの機能に関して」、情報理論に関するIEEE論文集、第51巻、506〜522頁、2005年2月
【非特許文献9】3GPP、「UTRAにおける多重入力多重出力」、3GPP TR 25.876 V7.0.0、2007年3月
【非特許文献10】3GPP、「ベース物理チャンネル及び変調」、TS 36.211、V8.7.0、2009年5月
【非特許文献11】3GPP、「多重化及びチャンネル符号化」、TS 36.212、V8.7.0、20095月
【非特許文献12】FCC、「無線周波数電磁場に対する人体露出のFCC指針遵守の評価」、OET速報65、1997年01版、1997年8月
【非特許文献13】3GPP、「空間チャンネルモデルAHG(3GPP及び3GPP2からのアドホック結合)」、SCM、テキストV6.0、2003年4月22日
【非特許文献14】3GPP TR 25.912:「進化型UTRA及びUTRANのための達成可能性研究」、V9.0.0(2009−10)
【非特許文献15】3GPP TR 25.913:「進化型UTRA(E−UTRA)及び進化型UTRAN(E−UTRAN)要件」、V8.0.0(2009−01)
【非特許文献16】W.C.Jakes著「マイクロ波移動通信」、IEEEプレス、1974年
【非特許文献17】K.K.Wong他著「マルチユーザMIMOアンテナシステムのための同時チャンネル直交化」、無線通信に関するIEEE論文集、第2巻、773〜786頁、2003年7月
【非特許文献18】P.Viswanath他著「ダンプアンテナを使用する2次利用者が1次利用者を認識したビームパルスフォーミング」、情報理論に関するIEEE論文集、第48巻、1277〜1294頁、2002年6月
【非特許文献19】A.A.M.Saleh他著「屋内多経路伝播統計モデル」、IEEE学会論文誌、通信における選択エリア、第195巻、SAC−5、第2号、128〜137頁、1987年2月
【非特許文献20】A.Paulraj他著「時空無線通信入門」、ケンブリッジ大学出版部、米国ニューヨーク州ニューヨーク西20番街40、2003年
【非特許文献21】J.Choi他著「フィードバック限界のあるMIMO−OFDMの補間ベースの送信ビームパルスフォーミング」、信号処理に関するIEEE論文集、第53巻、第11号、4125〜4135頁、2005年11月
【非特許文献22】I.Wong他著「適応OFDMシステムの長距離チャンネル予想」、IEEE講演論文集、2006年、「信号、システム、及びコンピュータに関するアシロマ会議」、第1巻、723〜736頁、米国カリフォルニア州パシフィックグローブ、2004年11月7〜10日
【非特許文献23】J.G.Proakis著「通信システム工学」、Prentice Hall、1994年
【非特許文献24】B.D.Van Veen他著「ビームパルスフォーミング:空間フィルタリング応用の自在手法」、IEEE ASSP雑誌、1988年4月
【非特許文献25】R.G.Vaughan著「携帯での最適結合に関して」、車両技術に関するIEEE論文集、第37巻、第4号、181〜188頁、1988年11月
【非特許文献26】F.Qian著「相関混信阻止の部分適応ビームパルスフォーミング」、信号処理に関するIEEE論文集、第43巻、第2号、506〜515頁、1995年2月19日
【非特許文献27】H.Krim他著「20年にわたる配列信号処理研究」、IEEE信号処理雑誌、67〜94頁、1996年7月
【非特許文献28】H.Boche他著「マルチユーザビームパルスフォーミングの異なる事前符号化/復号戦略の解析」、IEEE車両技術会議、第1巻、2003年4月
【非特許文献29】M.Schubert他著「「結合」ダーティーペーパー事前符号化及びダウンリンクビームパルスフォーミング」、第2巻、536〜540頁、2002年12月
【非特許文献30】H.Boche他著「アップリンク及びダウンリンクビームパルスフォーミングの一般二重性理論」、第1巻、87〜91頁、2002年12月
【非特許文献31】K.K.Wong、R.D.Murch、K.B.Letaief共著「マルチユーザMIMOアンテナシステムのための同時チャンネル直交化」、無線通信に関するIEEE論文集、第2巻、773〜786頁、2003年7月
【非特許文献32】Q.H.Spencer、A.L.Swindlehurst、M.Haardt共著「マルチユーザMIMOチャンネル内のダウンリンク空間多重化のゼロフォーシング方法」、信号処理に関するIEEE論文集、第52巻、461〜471頁、2004年2月
【非特許文献33】S.Robinson著「行列乗算の最適アルゴリズムに向けて」、SIAMニュース、第38巻、第9号、2005年11月
【非特許文献34】D.Coppersmith及びS.Winograd共著「等差数列を通じた行列乗算」、J.Symb.Comp.第9巻、251〜280頁、1990年
【非特許文献35】H.Cohn、R.Kleinberg、B.Szegedy、C.Umans共著「行列乗算の集団理論アルゴリズム」、379〜388頁、2005年11月
【非特許文献36】W.H.Press、s.a.Teukolsky、W.T.Vetterling、B.P.Flannery共著「Cの数値計算レシピ:科学技術計算技術」、ケンブリッジ大学出版部、1992年
【非特許文献37】Per−Erik Eriksson及びBjorn Odenhammar共著「VDSL2:次期重要広帯域技術」、Ericssonレビュー第1号、1、2006年
【非特許文献38】ArrayComm、「フィールド確証結果」、http://www.arraycomm.com/serve.php?page=proof
【非特許文献39】モバイルアドホックネットワーク(MANET)、http://en.wikipedia.org/wiki/Mobile_ad_hoc_network
【非特許文献40】http://en.wikipedia.org/wiki/List_of_ad−hoc_routing_protocols
【図面の簡単な説明】
【0050】
【図1】本発明の一実施形態において隣接DIDOクラスターによって取り囲まれた主なDIDOクラスターを示す図である。
【図2】本発明の一実施形態に使用される周波数分割多重アクセス(FDMA)法を示す図である。
【図3】本発明の一実施形態に使用される時分割多重アクセス(TDMA)法を示す図である。
【図4】本発明の一実施形態において対処される異なるタイプの干渉ゾーンを示す図である。
【図5】本発明の一実施形態に使用されるフレームワークを示す図である。
【図6】干渉ゾーン内のターゲットクライアントに対してSIR=10dBを仮定してSNRの関数としてのSERを示すグラフである。
【図7】2つのIDCI符号化法から導出されたSERを示すグラフである。
【図8】ターゲットクライアントが主DIDOクラスターから干渉しているクラスターまで移動する例示的なシナリオを示す図である。
【図9】距離(D)の関数としての信号対干渉ノイズ比(SINR)を示す図である。
【図10】平坦フェーディング狭帯域チャンネルにおける4QAM変調の3つのシナリオの符号誤り率(SER)性能を示す図である。
【図11】本発明の一実施形態によるIDCI符号化の方法を示す図である。
【図12】一実施形態における主DIDOクラスターの中心からのクライアントの距離の関数としてのSINR変動を示す図である。
【図13】SERが4−QAM変調に向けて導出される一実施形態を示す図である。
【図14】有限状態機械がハンドオフアルゴリズムを実行する本発明の一実施形態を示す図である。
【図15】シャドーイングが存在する場合のハンドオフ戦略の一実施形態を示す図である。
【図16】図14においていずれか2つの状態間で切り換わる時のヒステリシスループ機構を示す図である。
【図17】電力制御を伴うDIDOシステムの一実施形態を示す図である。
【図18】異なるシナリオにおいて4つのDIDO送信アンテナ及び4台のクライアントを仮定するSNR対SERを示す図である。
【図19】本発明の一実施形態による送信電力の異なる値に対してRF放射線源からの距離の関数としてのMPE電力密度を示す図である。
【図20a】低電力DIDO分散型アンテナの分布を示す図である。
【図20b】高電力DIDO分散型アンテナの分布を示す図である。
【図21a】図20aの構成に対応する電力分布を示す図である。
【図21b】図20bの構成に対応する電力分布を示す図である。
【図22a】図20aに示すシナリオに関する速度分布を示す図である。
【図22b】図20bに示すシナリオに関する速度分布を示す図である。
【図23】電力制御を伴うDIDOシステムの一実施形態を示す図である。
【図24】データを送信するラウンドロビンスケジューリングポリシーに従って全てのアンテナ群にわたって反復する方法の実施形態を示す図である。
【図25】米国特許第7,636,381号明細書における従来の固有モード選択に対するアンテナグループ分けによる電力制御の未符号化SER性能の比較を示す図である。
【図26a】BD符号化がDIDOアンテナとクライアント間の無線リンクにわたる異なる出力レベルに適合するように動的に符号化重みを調整するシナリオを示す図である。
【図26b】BD符号化がDIDOアンテナとクライアント間の無線リンクにわたる異なる出力レベルに適合するように動的に符号化重みを調整するシナリオを示す図である。
【図26c】BD符号化がDIDOアンテナとクライアント間の無線リンクにわたる異なる出力レベルに適合するように動的に符号化重みを調整するシナリオを示す図である。
【図27】DIDO2x2システムに関する遅延領域又は瞬間的なPDP(上側プロット)及び周波数領域(下側プロット)にわたる低周波数選択チャンネル(β=1を仮定)の振幅を示す図である。
【図28】クライアント当たり1つのアンテナによるDIDO2x2に関するチャンネル行列周波数応答の一実施形態を示す図である。
【図29】高い周波数選択度(例えば、β=0.1で)を特徴とするチャンネルのためのクライアント当たりに1つのアンテナによるDIDO2x2に関するチャンネル行列周波数応答の一実施形態を示す図である。
【図30】異なるQAM方式(すなわち、4−QAM、16−QAM、64−QAM)の例示的なSERを示す図である。
【図31】リンクアダプテーション(LA)法を実行する方法の実施形態を示す図である。
【図32】リンクアダプテーション(LA)法の一実施形態のSER性能を示す図である。
【図33】NFFT=64及びL0=8でのDIDO2x2システムに関するOFDMトーン指数の関数としての方程式(28)での行列の入力を示す図である。
【図34】L0=8、M=Nt=2送信アンテナ、及びPの可変的な数に対するSER対SNRを示す図である。
【図35】異なるDIDOオーダー及びL0=16に対する補間法の一実施形態のSER性能を示す図である。
【図36】スーパークラスター、DIDOクラスター、及びユーザクラスターを使用するシステムの一実施形態を示す図である。
【図37】本発明の一実施形態によるユーザクラスターを有するシステムを示す図である。
【図38a】本発明の一実施形態に使用されるリンク品質メトリック閾値を示す図である。
【図38b】本発明の一実施形態に使用されるリンク品質メトリック閾値を示す図である。
【図39】ユーザクラスターを確立するリンク品質行列の例を示す図である。
【図40】ユーザクラスターを確立するリンク品質行列の例を示す図である。
【図41】ユーザクラスターを確立するリンク品質行列の例を示す図である。
【図42】クライアントが異なるDIDOクラスターを横断する実施形態を示す図である。
【発明を実施するための形態】
【0051】
以前の従来技術の制限の多くを克服する1つの解決法は、分散入力分散出力(DIDO)技術の実施形態である。DIDO技術は、以下の特許及び特許出願に説明されており、その全ては、本特許の本出願人に譲渡され、かつ引用により組み込まれている。これらの特許及び出願は、時には集合的に「関連特許及び出願」と本明細書で呼ぶ。
【0052】
2010年6月16日出願の「干渉管理、ハンドオフ、電力制御、及び分散入力分散出力(DIDO)通信システム内のリンクアダプテーション」という名称の米国特許出願出願番号第12/802,988号明細書。
【0053】
2010年6月16日出願の「信号強度測定値に基づいてDIDO干渉相殺を調整するシステム及び方法」という名称の米国特許出願出願番号第12/802,976号明細書。
【0054】
2010年6月16日出願の「複数のDIDOクラスターを横断するクライアントのクラスター間ハンドオフを管理するシステム及び方法」という名称の米国特許出願出願番号第12/802,974号明細書。
【0055】
2010年6月16日出願の「クライアントの検出された速度に基づいて異なる分散入力分散出力(DIDO)ネットワーク間のクライアントハンドオフを管理するシステム及び方法」という名称の米国特許出願出願番号第12/802,989号明細書。
【0056】
2010年6月16日出願の「分散入力分散出力(DIDO)ネットワーク内の電力制御及びアンテナグループ分けのシステム及び方法」という名称の米国特許出願出願番号第12/802,958号明細書。
【0057】
2010年6月16日出願の「DIDOマルチキャリアシステム内のリンクアダプテーションのシステム及び方法」という名称の米国特許出願出願番号第12/802,975号明細書。
【0058】
2010年6月16日出願の「マルチキャリアシステム内のDIDO事前符号化補間のシステム及び方法」という名称の米国特許出願出願番号第12/802,938号明細書。
【0059】
2009年12月3日出願の「分散型アンテナ無線通信のシステム及び方法」という名称の米国特許出願出願番号第12/630,627号明細書。
【0060】
2009年10月6日に付与された2007年8月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許第7,599,420号明細書。
【0061】
2009年12月15日に付与された2007年8月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許第7,633,994号明細書。
【0062】
2009年12月22日に付与された2007年8月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許第7,636,381号明細書。
【0063】
2008年6月20日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許出願出願番号第12/143,503号明細書。
【0064】
2005年10月21日出願の「空間多重化対流圏散乱通信のシステム及び方法」という名称の米国特許出願出願番号第11/256,478号明細書。
【0065】
2008年8月26日に付与された2004年7月30日出願の「分散入力分散出力無線通信のシステム及び方法」という名称の米国特許第7,418,053号明細書。
【0066】
2004年4月2日出願の「空時符号化を使用して近垂直入射電離層波(「NVIS」)通信を強化するシステム及び方法」という名称の米国特許出願出願番号第10/817,731号明細書。
【0067】
本特許出願のサイズ及び複雑性を低減するために、関連特許及び出願の一部の開示を以下では明示的に説明してはいない。本発明の開示の完全な詳細説明に対しては関連特許及び出願を参照されたい。
【0068】
尚、以下の節I(関連出願出願番号第12/802,988号明細書からの開示)では、本出願の本出願人に譲渡された従来技術の参考文献及び先行出願を指す固有の1組の巻末の注を利用している。巻末の注の出典は、節Iの終わり(節IIの見出しの直前)に説明されている。節IIで使用する出典は、たとえ、これらの数字による識別が異なる参考文献(節IIの終わりに記載)を識別するとしても、その出典に対して、節Iに使用された数字による識別と重なる数字による識別を有する場合がある。従って、所定の数字による識別により識別される参考文献を数字による識別が使用される節内で識別することができる。
【0069】
I.関連出願出願番号第12/802,988号明細書からの開示
1.クラスター間干渉を除去する方法
ゼロRFエネルギを有する空間にロケーションを作成するために複数の分散型送信アンテナを使用する無線高周波(RF)通信システム及び方法を以下に説明する。M個の送信アンテナを使用する時に、所定のロケーションにおいてゼロRFエネルギの(M−1)個までの点を作成することができる。本発明の一実施形態において、ゼロRFエネルギの点は、無線デバイスであり、送信アンテナは、送信機と受信機間のチャンネル状態情報(CSI)を認識している。一実施形態において、CSIは、受信機で計算されて送信機にフィードバックされる。別の実施形態において、CSIは、チャンネル相互関係が利用されると仮定して受信機からトレーニングを通じて送信機で計算される。送信機は、CSIを利用し、同時に送信される干渉信号を決定することができる。一実施形態において、ブロック対角化(BD)事前符号化が、ゼロRFエネルギの点を生成するために送信アンテナに使用される。
【0070】
本明細書に説明するシステム及び方法は、上述の従来の受信/送信ビームフォーミング法と異なっている。実際には、受信ビームフォーミングでは、受信側で干渉を抑止するために重みを計算し(ヌルステアリングを通じて)、一方、本明細書に説明する本発明の一部の実施形態は、結果として「ゼロRFエネルギ」を有する空間内の1つ又は複数のロケーションが得られる干渉パターンを作成するために送信側で重みを適用する。それぞれ、あらゆるユーザに対する信号品質(又はSINR)又はダウンリンク収量を最大にするように設計された従来の伝送ビームパルスフォーミング又はBD事前符号化と異なり、本明細書に説明するシステム及び方法は、所定の状況下で及び/又は所定の送信機からの信号品質を最小にし、従って、ゼロRFエネルギの点がクライアントデバイス(時には「ユーザ」と本明細書で呼ぶ)で作成される。更に、分散入力分散出力(DIDO)システム(本発明者の関連特許及び出願に説明)という関連では、空間内に分散された送信アンテナにより、異なるユーザに対して複数のゼロRFエネルギの点及び/又は最大SINRを作成するために利用することができる自由度の拡大(すなわち、チャンネル空間ダイバーシティの拡大)が得られる。例えば、M個の送信アンテナで、RFエネルギの(M−1)個までの点を作成することができ、これとは対照的に、実際的なビームパルスフォーミング又はBDマルチユーザシステムは、典型的には送信側で、あらゆる数の送信アンテナMが得られるように、無線リンク上で対処することができる同時のユーザの数を制限する密集したアンテナで設計される。
【0071】
K<Mで、M個の送信アンテナ及びK人のユーザを有するシステムを考える。送信機はM個の送信アンテナとKユーザの間にCSI(
)を認識していると仮定している。簡潔さを期すために、あらゆるユーザは、単一のアンテナが装備されたと仮定しているが、同じ方法をユーザ当たり複数の受信アンテナに拡張することができる。K人のユーザのロケーションでゼロRFエネルギを作成する事前符号化重み(
)を以下の条件を満たすために計算する。
ここで、
は、全てのゼロ入力によるベクトルであり、Hは、
としてM個の送信アンテナからKユーザまでチャンネルベクトル(
)を結合することによって得られるチャンネル行列である。一実施形態において、チャンネル行列Hの特異値分解(SVD)を計算し、事前符号化重みwをHのヌル部分空間(0個の単数値により識別)に対応する右特異ベクトルとして定義する。送信アンテナは、k番目のユーザで受信される信号が
によって示すように、K人のユーザのロケーションでK個のゼロRFエネルギの点を作成しながら、RFエネルギを送信するために先に定義した重みベクトルを使用し、ここで、
は、k番目のユーザでの加法性白色ガウスノイズ(AWGN)である。一実施形態において、チャンネル行列Hの特異値分解(SVD)を計算し、事前符号化重みwは、Hのヌル部分空間(0個単数値により識別)に対応する右特異ベクトルとして定義する。
【0072】
別の実施形態において、無線システムは、DIDOシステムであって、ゼロRFエネルギの点は、異なるDIDOカバレージエリア間にクライアントへの干渉を事前に相殺するために作成される。米国特許出願出願番号第12/630,627号明細書において、以下を含むDIDOシステムが説明されている。
・DIDOクライアント
・DIDO分散型アンテナ
・DIDO基地送受信機局(BTS)
・DIDO基地局ネットワーク(BSN):
どのBTSも、DIDOクラスターという所定のカバレージエリアに検査を行う複数の分散型アンテナにBSNを通じて接続される。本特許出願では、隣接DIDOクラスター間の干渉を除去するためのシステム及び方法を説明する。図1に示すように、主DIDOクラスターは、近傍クラスターからの干渉による影響を受けるクライアント(すなわち、マルチユーザDIDOシステムによってサービス提供されるユーザデバイス)(又はターゲットクライアント)にサービスを提供すると仮定している。
【0073】
一実施形態において、近傍クラスターは、従来のセルラーシステムと類似の周波数分割多重アクセス(FDMA)法に従って異なる周波数で作動する。例えば、3の周波数再使用係数で、同じキャリア周波数は、図2に示すように3つのDIDOクラスター毎に繰り返される。図2では、異なるキャリア周波数は、F1、F2、及びF3と識別される。この実施形態は一部の例に使用することができるが、この解決法により、周波数利用効率の減量が発生し、その理由は、利用可能なスペクトルが複数のサブバンドに分割され、DIDOクラスターの部分集合のみが同じサブバンドにおいて作動するからである。更に、複雑なセル設計により異なる周波数に異なるDIDOクラスターを関連付ける必要があり、従って、干渉が防止される。従来技術のセルラーシステムと同様に、このようなセル設計では、同じ周波数を使用するクラスター間の干渉を回避するためにアンテナの所定の配置及び送信電力の制限が必要である。
【0074】
別の実施形態において、近傍クラスターは、同じ周波数帯域であるが時分割多重アクセス(TDMA)法に従って異なる時間スロットで作動する。例えば、図3に示すように、DIDO送信は、図示のように、所定のクラスターに対しては時間スロットT1、T2、及びT3においてのみ許可される。時間スロットは、異なるクラスターがラウンドロビン方針に従って予定されるように異なるクラスターに等しく割り当てられる。異なるクラスターが異なるデータ転送速度要件を特徴とする場合に(すなわち、受信可能範囲エリア当たりにクライアント数が少ない農村地帯内のクラスターに対して混雑した都市環境のクラスター)、異なる優先度が、データ転送速度要件が大きいほど多くの時間スロットが割り当てられているように異なるクラスターに割り当てられる。上述のようなTDMAを本発明の一実施形態に使用することができるが、TDMA手法では、異なるクラスターにわたって時間同期を必要とする場合があり、かつ結果として周波数利用効率低下になる場合があり、その理由は、干渉クラスターは、同時に同じ周波数を使用することができないからである。
【0075】
一実施形態において、全ての近傍クラスターは、同じ周波数帯域において同時に送信し、干渉を回避するためにクラスターにわたって空間処理を使用する。この実施形態において、マルチクラスターDIDOシステムは、(i)複数のクライアントに同じ周波数帯域内で同時非干渉データストリームを送信するために主クラスター内で従来のDIDO事前符号化を使用し(例えば、米国特許第7,599,420号明細書、米国特許第7,633,994号明細書、米国特許第7,636,381号明細書、及び米国特許出願出願番号第12/143,503号明細書を含む関連特許及び出願明細書に説明)、(ii)ターゲットクライアントのロケーションでゼロ高周波(RF)エネルギの点を作成することにより、図4において干渉ゾーン8010内にあるクライアントに対する干渉を回避するために、近傍クラスターにおいて干渉相殺でDIDO事前符号化を使用するターゲットクライアントが干渉ゾーン410にある場合に、主クラスター411から、データストリームを含むRFの合計が干渉クラスター412〜413から単に主クラスターからのデータストリームを含むRFであることになるゼロRFエネルギを受け取る。従って、近傍クラスターは、干渉ゾーン内のターゲットクライアントが干渉を受けることなく同時に同じ周波数を利用することができる。
【0076】
実用システムでは、DIDO事前符号化の性能は、チャンネル推定誤差又はドップラー効果(DIDO分散型アンテナで古いチャンネル状態情報が発生する)、マルチキャリアDIDOシステム内の相互変調歪(IMD)、時間又は周波数オフセットのような異なるファクタによる影響を受けている場合がある。これらの影響の結果として、ゼロRFエネルギの点をもたらすことは非実用的である場合がある。しかし、干渉クラスターからのターゲットクライアントでのRFエネルギが主クラスターからのRFエネルギと比較して取るに足りない限り、ターゲットクライアントでの関連性能は、干渉による影響を受けない。例えば、10-6のターゲットビット誤り率(BER)をもたらすように前進型誤信号訂正(FEC)符号化を使用し、4−QAM衛星配置を復調するためにクライアントが20dBの信号対ノイズ比(SNR)を必要とすると仮定する。干渉クラスターから受け取られたターゲットクライアントでのRFエネルギが主クラスターから受け取られたRFエネルギより20dB下回る場合に、干渉は取るに足りないものであり、クライアントは、所定のBERターゲット内で無事にデータを復調することができる。従って、本明細書で使用する時に「ゼロRFエネルギ」という用語は、干渉RF信号からのRFエネルギがゼロであることを必ずしも意味するというわけではない。むしろ、RFエネルギは、望ましいRF信号が受信機で受信することができるように望ましいRF信号のRFエネルギに対して十分に低いことを意味する。更に、望ましいRFエネルギに対する干渉RFエネルギの所定の望ましい閾値を説明しているが、本発明の基本的な原理は、所定の閾値に限定されない。
【0077】
図4に示すように異なるタイプの干渉ゾーン8010がある。例えば、「タイプA」領域(図4では文字「A」により表示)は、1つの近傍クラスターのみからの干渉による影響を受けており、一方、「タイプB」領域(文字「B」により表示)は、2つ又は複数の近傍クラスターからの干渉に対応する。
【0078】
図5は、本発明の一実施形態に使用されるフレームワークを示している。点はDIDO分散型アンテナを示し、十字記号はDIDOクライアントを指し、矢印はRFエネルギの伝播の方向を示している。主クラスター内のDIDOアンテナは、そのクラスター内のクライアントMC501に事前符号化データ信号を送信する。同様に、干渉クラスター内のDIDOアンテナは、従来のDIDO事前符号化を通じてそのクラスター内のクライアントIC502にサービスを提供する。緑色十字記号503は、干渉ゾーン内のターゲットクライアントTC503を示している。主クラスター511内のDIDOアンテナは、従来のDIDO事前符号化を通じてターゲットクライアント(黒色の矢印)に事前符号化データ信号を送信する。干渉クラスター512内のDIDOアンテナは、ターゲットクライアント503(緑色矢印)の方向に向けてゼロRFエネルギを作成するために事前符号化を使用する。
【0079】
いずれかの干渉ゾーン410A(図4のB)内のターゲットクライアントkでの受信信号は、
(1)よって示されており、ここで、k=1、…,K、Kは干渉ゾーン8010A、B内のクライアントの数であり、Uは主DIDOクラスター内のクライアントの数であり、Cは干渉DIDOクラスター412〜413の数であり、
は、干渉クラスターc内のクライアントの数である。更に、クライアントデバイスでのM個の送信DIDOアンテナ及びN個の受信アンテナを仮定し、
は、クライアントkでの受信データストリームを含むベクトルであり、
は、主DIDOクラスター内のクライアントkへの送信データストリームのベクトルであり、
は、主DIDOクラスター内のクライアントuへの送信データストリームのベクトルであり、
は、c番目の干渉DIDOクラスター内のクライアントiへの送信データストリームのベクトルであり、
は、クライアントkのN個の受信アンテナでの加法性白色ガウスノイズ(AWGN)のベクトルであり、
は、主DIDOクラスター内のクライアントkでのN個の受信アンテナへのM個の伝送DIDOアンテナからのDIDOチャンネル行列であり、
は、c番目の干渉DIDOクラスター内のクライアントkのN個の受信アンテナへのM個の伝送DIDOアンテナからのDIDOチャンネル行列であり、
は、主DIDOクラスター内のクライアントkに対するDIDO事前符号化重みの行列であり、
は、主DIDOクラスター内のクライアントuに対するDIDO事前符号化重みの行列であり、
は、c番目の干渉DIDOクラスター内のクライアントiに対するDIDO事前符号化重みの行列である。
【0080】
表記を簡素化するために、かつ一般性を失わずに、全てのクライアントがN個の受信アンテナを装備し、あらゆるDIDOクラスターにおいてM個のDIDO分散型アンテナがあり、
及び
と仮定する。Mがクラスター内の受信アンテナの総数より大きい場合に、余分の送信アンテナは、干渉ゾーン内のターゲットクライアントに対して干渉を事前に相殺するために、又は米国特許第7,599,420号明細書、米国特許第7,633,994号明細書、米国特許第7,636,381号明細書、及び米国特許出願出願番号第12/143,503号明細書を含む関連特許及び出願に説明されたダイバーシティ方式を通じて同じクラスター内のクライアントに対してリンク堅牢性を改善するのに使用される。
【0081】
DIDO事前符号化重みは、同じDIDOクラスター内のクライアント間干渉を事前に相殺するために計算される。例えば、米国特許第7,599,420号明細書、米国特許第7,633,994号明細書、米国特許第7,636,381号明細書、及び米国特許出願出願番号第12/143,503号明細書、及び[7]を含む関連特許及び出願に説明されたブロック対角化(BD)事前符号化を使用し、以下の条件が主クラスターにおいて満たされるようにクライアント間干渉を除去することができる(2)。
隣接DIDOクラスター内の事前符号化重み行列は、以下の条件が満たされるように設計される(3)。
事前符号化行列
を計算するために、M個の送信アンテナからの干渉クラスター内の
クライアントまでの並びに干渉ゾーン内のクライアントkまでのダウンリンクチャンネルが推定され、事前符号化行列が、干渉クラスター内のDIDO BTSにより計算される。干渉クラスターにおいて事前符号化行列を計算するためにBD方法が使用される場合に、以下の実効チャンネル行列が、近傍クラスター内のi番目のクライアントへの重みを計算するために構成される(4)。
ここで、
は、干渉クラスターcに対してチャンネル行列
から得られる行列であり、i番目のクライアントに対応する列が除去される。(1)に条件(2)及び(3)を代入し、ターゲットクライアントkに対して受信したデータストリームを取得し、クラスター内及びクラスター間干渉が除去される(5)。
近傍クラスターにおいて計算された(1)内の事前符号化重み
は、干渉ゾーン内のターゲットクライアントへの干渉を事前に相殺しながら、それらのクラスター内の全てのクライアントに事前符号化データストリームを送信するように設計される。ターゲットクライアントは、その主クラスターからのみ事前符号化データを受信する。異なる実施形態において、同じデータストリームは、ダイバーシティ利得を取得するために、主なクラスター及び近傍クラスターからターゲットクライアントに送られる。この場合に、(5)内の信号モデルは、
(6)として表される。ここで、
は、c番目のクラスター内のDIDO送信機から干渉ゾーン内のターゲットクライアントkまでのDIDO事前符号化行列である。尚、(6)の方法は、近傍クラスターにわたる時間同期が必要であり、これは、大規模システムにおいて達成するには複雑であると考えられるが、依然として尚もダイバーシティ利得利点が実施のコストを正当化する場合は全く達成可能である。
【0082】
本発明者は、信号対ノイズ比(SNR)の関数としての符号誤り率(SER)の観点から提案する方法の性能を評価することによって開始する。一般性を失わずに、クライアント当たりの単一のアンテナ及び再定式化(1)を仮定して以下の信号モデルを定義する(7)。
ここで、INRは、INR=SNR/SIRとして定義される混信対ノイズ比であり、SIRは信号対干渉比である。
【0083】
図6は、干渉ゾーン内のターゲットクライアントに対してSIR=10dBを仮定したSNRの関数としてのSERを示している。一般性を失わずに、前方誤り訂正(FEC)符号化なしで4−QAM及び16−QAMに対してSERを測定した。符号化されていないシステムに対して1%にターゲットSERを固定する。このターゲットは、変調次数に基づいて、SNRの異なる値に対応する(すなわち、4−QAMに対してSNR=20dB及び16−QAMに対してSNR=28dB)。符号化利得のためにFEC符号化を使用する時に、より低いSERターゲットをSNRの同じ値に対して満たすことができる。クラスター当たりの2つのDIDOアンテナ及び2つのクライアント(各単一のアンテナを装備)で2つのクラスター(1つの主クラスター及び1つの干渉クラスター)のシナリオを考える。主クラスター内のクライアントの1つは、干渉ゾーン内にある。平坦フェーディング狭帯域チャンネルを仮定するが、以下の結果は、周波数選択マルチキャリア(OFDM)システムに拡張することができ、各サブキャリアは、平坦フェーディングに受ける。2つのシナリオ、すなわち、(i)事前符号化重み
が干渉ゾーン内のターゲットクライアントに対応することなく計算されるDIDOクラスター間干渉(IDCI)を有する一方のシナリオ、及び(ii)ターゲットクライアントへのIDCIを除去するために重み
を計算することによってIDCIが除去される他方のシナリオを考える。IDCIが存在する場合に、SERが高くかつ所定のターゲットよりも大きいことが認められる。近傍クラスターでのIDCI事前符号化で、ターゲットクライアントへの干渉が除去され、SNR>20dBが得られるようにSERターゲットに到達する。
【0084】
図6の結果は、(5)の場合と同様にIDCI事前符号化を仮定する。近傍クラスターでのIDCI事前符号化も(6)の場合と同様に干渉ゾーン内のターゲットクライアントへのデータストリームを事前符号化するのに使用される場合に、更に別のダイバーシティ利得が得られる。図7は、2つの技術、すなわち、(i)(5)内のIDCI事前符号化を使用する「方法1」、及び(ii)近傍クラスターがターゲットクライアントにも事前符号化データストリームを送信する(6)のIDCI事前符号化を使用する「方法2」から導出されるSERを比較している。方法2では、ターゲットクライアントに事前符号化データストリームを送信するのに使用された近傍クラスター内のDIDOアンテナによって得られる更に別のアレイ利得のために、従来のIDCI事前符号化と比較して〜3dB利得が得られる。より一般的には、方法1を凌ぐ方法2のアレイ利得は、10*log10(C+1)に比例しており、ここで、Cは近傍クラスターの数であり、係数「1」は主クラスターを指す。
【0085】
次に、干渉ゾーンに関するターゲットクライアントのロケーションの関数としての以前の方法の性能を評価する。ターゲットクライアント8401が図8に示すように主DIDOクラスター802から干渉クラスター803まで移動する1つの簡単なシナリオを考える。主クラスター802内の全てのDIDOアンテナ812が条件(2)を満たすようにクラスター内干渉を除去するためにBD事前符号化を使用すると仮定する。単一の干渉DIDOクラスター、クライアントデバイス801での単一の受信アンテナ、及び主又は干渉クラスター内の全てのDIDOアンテナからクライアントまでの等しい伝播損失を仮定する(すなわち、円を示してクライアントの周りに設けられたDIDOアンテナ)。伝播損失指数4を有する1つの簡略化された伝播損失モデル[11]を使用する(一般的な都市環境の場合と同様に)。これ以降の解析は、伝播損失に適合するように(7)を拡張する以下の簡略化された信号モデルに基づいている(8)。
ここで、信号対干渉比(SIR)は、SIR=((1−D)/D)4として導出される。IDCIをモデル化する際に、3つのシナリオ、すなわち、i)IDCIのない理想的な場合、ii)条件(3)を満たすために干渉クラスターにおいてBD事前符号化を通じて事前に相殺されるIDCI、及びiii)IDCIあり、かつ近傍クラスターによる事前除去なしを考慮する。
【0086】
図9は、距離(D)の関数としての信号対干渉ノイズ比(SINR)を示している(すなわち、ターゲットクライアントが主クラスター802から干渉クラスター8403内のDIDOアンテナ813の方向に移動する時)。SINRは、信号電源及び干渉の比率プラス(8)内の信号モデルを使用してノイズ電力として導出される。D=Doに向けてDo=0.1及びSNR=50dBを仮定する。IDCIがない場合には、無線リンク性能はノイズだけによる影響を受けており、SINRは伝播損失のために減少する。IDCIが存在する場合(すなわち、IDCI事前符号化なしで)近傍クラスター内のDIDOアンテナからの干渉は、SINRを低減する一因になる。
【0087】
図10は、平坦フェーディング狭帯域チャンネルにおける4−QAM変調の3つのシナリオの符号誤り率(SER)性能を示している。これらのSER結果は、図9のSINRに対応する。図9のSINR閾値SINRT=20dBに対応する符号化されていないシステム(すなわち、FECなしで)に対して1%のSER閾値を仮定する。SINR閾値は、データ送信に使用される変調次数に依存する。典型的には、同じターゲット誤り率をもたらすために、変調次数が高いほど高いSINRTを特徴とする。FECで、符号化利得のために同じSINR値に対してより低いターゲットSERをもたらすことができる。事前符号化なしのIDCIの場合に、ターゲットSERは、範囲D<0.25の範囲内でのみ達成される。近傍クラスターでのIDCI事前符号化で、ターゲットSERを満たす範囲は、D<0.6まで拡張される。その範囲よりも大きいと、SINRは、伝播損失のために増加してターゲットSERは満たされない。
【0088】
IDCI事前符号化する方法の実施形態を図11に示すが、以下の段階から構成される。
・SIR推定1101:クライアントは、主DIDOクラスターからの信号電力(すなわち、受信した事前符号化データに基づいて)及び隣接DIDOクラスターからのノイズプラス干渉信号電力を推定する。シングルキャリアDIDOシステムは、フレーム構造は、短いサイレンス期間に設計することができる。例えば、サイレンス期間は、チャンネル状態情報(CSI)フィードバック中にチャンネル推定のトレーニングと事前符号化データ送信間に定義することができる。一実施形態において、近傍クラスターからのノイズプラス干渉信号電力は、主クラスター内のDIDOアンテナからサイレンス期間中に測定される。実用的なDIDOマルチキャリア(OFDM)システムは、ヌルトーンが、典型的には、送信側及び受信側でのフィルタリングのためにオフセットされる直流(DC)及び帯域の縁部での減衰を防止するのに使用される。マルチキャリアシステムを使用する別の実施形態において、ノイズプラス干渉信号電力は、ヌルトーンから推定される。補正係数を使用し、帯域の縁部での送信/受信フィルタ減衰を補正することができる。主クラスターからの信号対ノイズプラス干渉電力(PS)及び近傍クラスター(PIN)からのノイズプラス干渉電力が推定されると、クライアントは、
(9)としてSINRを計算する。代替的に、SINR推定値は、無線信号電力を測定するために、一般的な無線通信システムに使用される受信信号強度表示(RSSI)から導出される。(9)内のメトリックは、ノイズと干渉電力レベルを区別することができないことが認められる。例えば、干渉のない環境のシャドーイングによる影響を受けるクライアント(すなわち、主クラスター内の全てのDIDO分散型アンテナからの信号電力を減衰する障害の後方)は、たとえクラスター間干渉による影響を受けていないとしても低いSINRを推定することができる。提案する方法のより信頼性が高いメトリックは、
(10)として計算されるSIRであり、ここで、PNは、ノイズ電力である。実用的なマルチキャリアOFDMシステムは、主クラスター及び近傍クラスターの全てのDIDOアンテナが同じ1組のヌルトーンを使用すると仮定し、(10)のノイズ電力PNは、ヌルトーンから推定される。上述のように、ノイズプラス干渉電力(PIN)は、サイレンス期間から推定される。最後に、信号対ノイズプラス干渉電力(PS)は、データトーンから導出される。これらの推定値から、クライアントは、(10)でSIRを計算する。
・近傍クラスター1102〜1103でのチャンネル推定:(10)内の推定SIRが、図11において8702で決定される所定の閾値(SIRT)よりも小さい場合に、クライアントは、近傍クラスターからのトレーニング信号を視聴し始める。尚、SIRTは、データ送信に使用される変調及びFECコード方式(MCS)に依存する。異なるSIRターゲットは、クライアントのMCSによって定義される。異なるクラスターのDIDO分散型アンテナが時間同期化された時に(すなわち、同じパルス/秒PPS時間基準にロック)、クライアントは、8703で近傍クラスター内のDIDOアンテナにそのチャンネル推定値を配信するためにトレーニングシーケンスを利用する。近傍クラスター内のチャンネル推定のトレーニングシーケンスは、主クラスターからのトレーニングに直交するように設計される。代替的に、異なるクラスター内のDIDOアンテナが時間同期化されない時に、直角のシーケンス(良好な相互相関特性を有する)が、異なるDIDOクラスター内の時間同期に使用される。クライアントが近傍クラスターの時間/周波数基準にロックされた状態で、チャンネル推定が1103で実行される。
・IDC事前符号化I1104:チャンネル推定値が近傍クラスター内のDIDO BTSで利用可能になると、IDCI事前符号化が、(3)の条件を満たすために計算される。近傍クラスター内のDIDOアンテナは、図4の干渉ゾーン410内のクライアントへの干渉を事前に相殺しながらクラスター内のクライアントだけに事前符号化データストリームを送信する。クライアントが図4のタイプB干渉ゾーン410内にある場合に、クライアントへの干渉は、複数のクラスターによって生成され、IDCI事前符号化が、同時に全ての近傍クラスターによって実行されることが認められる。
【0089】
ハンドオフの方法
これ以降、異なる種類のサービス(すなわち、低移動度又は高移動度サービス)を行う別々のエリアに位置する分散型アンテナによりポピュレートされたDIDOクラスターにわたって移動するクライアントに関する異なるハンドオフ方法を説明する。
【0090】
a.隣接DIDOクラスター間のハンドオフ
一実施形態において、上述のクラスター間干渉を除去するIDCI−前置符号化器は、DIDOシステムにおけるハンドオフ方法の基線として使用される。セルラーシステムにおける従来のハンドオフは、異なる基地局によってサービス提供されるセルにわたってシームレスにスイッチングすべきクライアントに向けて考慮される。DIDOシステムは、ハンドオフにより、クライアントは、接続を失わずにクラスター間に移動することができる。
【0091】
DIDOシステムのハンドオフ戦略の一実施形態を示すために、2つのクラスター802及び803だけによる図8の例を再びを考える。クライアント801が主クラスター(C1)802から近傍クラスター(C2)803に移動する時に、ハンドオフ方法の実施形態において、異なるクラスターの信号品質を動的に計算し、クライアントに対して最低誤り率特性が得られるクラスターを選択する。
【0092】
図12は、クラスターC1の中心からのクライアントの距離の関数としてのSINR変動を示している。FEC符号化のない4−QAM変調に対して、ターゲットSINR=20dBを考える。円により識別される線は、C1及びC2が干渉相殺なしでDIDO事前符号化を使用する時にC1内のDIDOアンテナによってサービス提供されるターゲットクライアントのSINRを表している。近傍クラスターからの伝播損失及び干渉のためにDの関数としてのSINRは減少する。IDCI事前符号化が近傍クラスターで実行された時に、SINR減量は、伝播損失によるにすぎなく(三角形を有する線に示すように)、その理由は、干渉が完全に除去されるからである。対称的挙動が、クライアントが近傍クラスターからサービス提供される時に体験される。ハンドオフ戦略の一実施形態は、クライアントがC1からC2に移動する時に、アルゴリズムが、所定のターゲットよりも上方にSINRを維持する異なるDIDO方式間で切り換わるように定義される。
【0093】
図12のプロットから、図13の4−QAM変調のSERを導出する。異なる事前符号化戦略間で切り換わることにより、SERは、所定のターゲット内に維持されたことが認められる。
【0094】
ハンドオフ戦略の一実施形態は、以下の通りである。
・C1−DIDO及びC2−DIDO事前符号化:クライアントが干渉ゾーンから離れる方向にC1内にある時に、クラスターC1及びC2は、独立して従来のDIDO事前符号化で作動する。
・C1−DIDO及びC2−IDCI事前符号化:クライアントが干渉ゾーンの方向に移動する時に、SIR又はSINRが劣化する。ターゲットSINRT1に到達した時に、ターゲットクライアントは、C2内の全てのDIDOアンテナからチャンネルを推定し始めてC2のBTSにCSIを供給する。C2内のBTSは、IDCI事前符号化を計算し、ターゲットクライアントへの干渉を防止すしながらC2内の全てのクライアントに送信する。ターゲットクライアントが干渉ゾーン内にある限り、C1及びC2にCSIを供給し続ける。
・C1−IDCI及びC2−DIDO事前符号化:クライアントがC2の方向に移動する時に、SIR又はSINRは、再びターゲットに到達するまで減少し続ける。この時点で、クライアントは、近傍クラスターにスイッチングすることに決定する。この場合に、C1は、IDCI事前符号化でその方向に向けてゼロ干渉を作成するためにターゲットクライアントからのCSIを使用し始め、一方、近傍クラスターは、従来のDIDO事前符号化に向けてCSIを使用する。一実施形態において、SIR推定値がターゲットに接近する時に、クラスターC1及びC2は、クライアントが両方の場合にはSIRを推定することを可能にするために、代替的にDIDO事前符号化及びIDCI事前符号化方式を試行する。次に、クライアントは、所定の誤り率特性メトリックを最大にする最良の方式を選択する。本方法が適用される時に、ハンドオフ戦略の交差点が、図12の三角形及び菱形を有する曲線の交差部で発生する。一実施形態は、(6)に説明した修正されたIDCI事前符号化方法を使用し、近傍クラスターも、アレイ利得が得られるようにターゲットクライアントに事前符号化データストリームを送信する。この手法で、ハンドオフ戦略が簡素化され、その理由は、クライアントは、交差点で両方の戦略にSINRを推定する必要があるわけではないからである。
・C1−DIDO及びC2−DIDO事前符号化:クライアントがC2の方向に干渉ゾーンから出た時に、主クラスターC1は、IDCI事前符号化を通じてそのターゲットクライアントの方向に干渉を事前に相殺するのを停止し、C1内に残る全てのクライアントに対して従来のDIDO事前符号化に再び切り換わる。ハンドオフ戦略におけるこの最終交差点は、ターゲットクライアントからC1への不要なCSIフィードバックを回避するために有用であり、従って、フィードバックチャンネルにわたるオーバヘッドが低減される。一実施形態において、第2のターゲットSINRT2が定義される。SINR(又はSIR)がこのターゲットを上回った時に、戦略が、C1−DIDO及びC2−DIDOに切り換わる。一実施形態において、クラスターC1は、クライアントがSINRを推定することを可能にするためにDIDO事前符号化とIDCI事前符号化の間で交替し続ける。次に、クライアントは、C1に対して、上からターゲットSINRT1により密接に接近する方法を選択する。
【0095】
上述の方法は、リアルタイムで異なる方式に向けてSINR又はSIR推定値を計算し、最適方式を選択するのに使用する。一実施形態において、ハンドオフアルゴリズムは、図14に示す有限状態機械に基づいて設計される。クライアントは、現状を追跡し、SINR又はSIRが図12に示す所定の閾値よりも小さいか又は上回った時に次の状態に切り換わる。上述のように、状態1201では、クラスターC1及びC2は、独立して従来のDIDO事前符号化で作動し、クライアントは、クラスターC1によってサービス提供され、状態1202では、クライアントは、クラスターC1によってサービス提供され、C2内のBTSは、IDCI事前符号化を計算し、クラスターC1は、従来のDIDO事前符号化を使用して作動し、状態1203では、クライアントは、クラスターC2によってサービス提供され、C1内のBTSは、IDCI事前符号化を計算し、クラスターC2は、従来のDIDO事前符号化を使用して作動し、状態1204では、クライアントは、クラスターC2によってサービス提供され、クラスターC1及びC2は、独立して従来のDIDO事前符号化で作動する。
【0096】
シャドーイング効果が存在する場合に、信号品質又はSIRは、図15に示すように閾値の周りで変動する場合があり、図14の連続的状態間の反復的スイッチングが発生する。反復的に状態を変更することは、望ましくない影響であり、その理由は、結果として、伝送方式間のスイッチングを可能にするクライアント及びBTS間の制御チャンネルに対する有意なオーバヘッドが発生するからである。図15は、シャドーイングが存在する場合のハンドオフ戦略の一実施形態を示している。一実施形態において、シャドーイング係数は、分散3[3]を有する対数正規分布に従ってシミュレーションを行われる。これ以降、DIDOハンドオフ中の反復的スイッチング効果を防止するいくつかの方法を定義する。
【0097】
本発明の一実施形態は、状態スイッチング効果に対処するためにヒステリシスループを使用する。例えば、図14の「C1−DIDO,C2−IDCI」9302と「C1−IDCI,C2−DIDO」9303(代替的に、その逆)の状態間で切り換わる時に、閾値SINRT1を範囲A1内で調整することができる。本方法は、信号品質がSINRT1の周りで変動する時状態間の反復的スイッチングを回避する。例えば、図16は、図14のあらゆる2つ状態間で切り換わる時のヒステリシスループ機構を示している。状態BからAに切り換わるためには、SIRは、(SIRT1+A1/2)より大きくなければならないが、AからBに再び切り換わるためには、SIRは、(SIRT1−A1/2)を下回らなければならない。
【0098】
異なる実施形態において、閾値SINRT2は、図14で有限状態機械の第1及び第2の(又は第3及び第4の)状態間の反復的スイッチングを回避するように調整される。例えば、値A2の範囲は、閾値SINRT2がチャンネル状態及びシャドーイング効果に基づいてその範囲で選択されるように定義することができる。
【0099】
一実施形態において、無線リンクにわたって推定されるシャドーイングの分散に基づいて、SINR閾値は、範囲[SINRT2、SINRT2+A2]内で動的に調整される。
クライアントがその現在のクラスターから近傍クラスターまで移動する時に、受信信号強度(又はRSSI)の分散から対数正規分布の分散を推定することができる。
【0100】
以前の方法は、クライアントがハンドオフ戦略をトリガすると仮定する。一実施形態において、ハンドオフ決定は、複数のBTSにわたる通信が可能にされると仮定してDIDO BTSに任せられる。
【0101】
簡潔さを期すために、以前の方法は、FEC符号化なし及び4−QAMを仮定して導出される。より一般的には、SINR又はSIR閾値は、異なる変調符号化方式(MCS)に向けて導出され、ハンドオフ戦略は、干渉ゾーン内の各クライアントに対して、ダウンリンクデータ転送速度を最適化するために、リンクアダプテーションと組み合わせて設計される(例えば、米国特許第7,636,381号明細書を参照されたい)。
【0102】
b.低及び高ドップラーDIDOネットワーク間のハンドオフ
DIDOシステムは、クローズドループ伝送方式を使用し、ダウンリンクチャンネルにわたってデータストリームを事前符号化する。クローズドループ方式は、フィードバックチャンネルにわたって待ち時間により本質的に抑制される。実用的なDIDOシステムは、コンピュータの時間は、高い処理パワーを有する送受信機により低減することができ、待ち時間の殆どは、BTSから分散型アンテナにCSI及びベースバンド方式の事前符号化データを配信する時にDIDO BSNにより導入されることが推定される。BSNは、デジタル加入者回線(DSL)、ケーブルモデム、ファイバリング、T1線、光同軸混成(HFC)ネットワーク、及び/又は固定無線(例えば、WiFi)を含むがこれらに限定されない様々なネットワーク技術で形成することができる。専用ファイバは、典型的には、帯域幅が非常に大きく、待ち時間が低いが(潜在的にローカル領域で1ミリ秒未満)、DSL及びケーブルモデムほどは普及していない。今日、DSL及びケーブルモデム接続は、典型的には米国ではラストマイル待ち時間が10〜25ms間に存在するが、非常に普及している。
【0103】
BSNにわたる最大待ち時間で、DIDO事前符号化の性能劣化なしでDIDO無線リンクにわたって満足できる最大ドップラーシフトが決まる。例えば、[1]では、400MHzのキャリア周波数で、約10ミリ秒の待ち時間を有するネットワーク(すなわち、DSL)は、最大8mph(稼動速度)までのクライアントの速度を許容することができ、一方、1ミリ秒の待ち時間を有するネットワーク(すなわち、ファイバリング)は、最大70mphまでの速度(すなわち、フリーウェートラヒック)をサポートすることができることが見出されている。
【0104】
BSNにわたって満足できる最大ドップラーシフトに基づいて、2つ又は複数のDIDOサブネットワークを定義する。例えば、DIDO BTSと分散型アンテナ間の待ち時間が長いDSL接続を有するBSNは、低移動度又は固定無線サービス(すなわち、低ドップラーネットワーク)しか配信することができず、一方、待ち時間が短いファイバリングにわたる待ち時間が短いBSNは、高移動性を満足できる(すなわち、高ドップラーネットワーク)。広帯域ユーザの殆どは、広帯域使用時には移動しておらず、更に、殆どのユーザは、多くの高速物体が通過するエリア(例えば、高速道路の横)の近くに位置する可能性がなく、その理由は、このようなロケーションは、典型的には、生活したり又は事務所を経営するにはより望ましくないロケーションであるからであることが認められる。しかし、高速で広帯域を使用している(例えば、高速道路を移動する車中)か、又は高速物体近傍(例えば、高速道路の近くに位置する店舗内)にいると思われる広帯域ユーザが存在する。これらの2つの異なるユーザドップラーシナリオに対処するために、一実施形態において、低ドップラーDIDOネットワークは、広域にわたって比較的低電力(すなわち、1W〜100W、屋内又は屋上配置のための)の広がりを有する典型的には多くのDIDOアンテナから構成され、一方、高ドップラーネットワークは、高電力送信(すなわち、100W、屋上又は塔配置のための)を有する典型的には少数のDIDOアンテナから構成される。低ドップラーDIDOネットワークは、典型的には多くの低ドップラーユーザにサービスを提供し、及びDSL及びケーブルモデムのような廉価な待ち時間が長いブロードバンド接続を使用して典型的には低い接続費でサービスを提供することができる。高ドップラーDIDOネットワークは、典型的には少数の高ドップラーユーザにサービスを提供し、ファイバのような高価な待ち時間が短いブロードバンド接続を使用して典型的に高い接続費でそれを行うことができる。
【0105】
異なるタイプのDIDOネットワーク(例えば、低ドップラー及び高ドップラー)にわたる干渉を回避するために、時分割多重アクセス(TDMA)、周波数分割多重アクセス(FDMA)又は符号分割多重アクセス(CDMA)のような異なる多重アクセス技術を使用することができる。
【0106】
異なるタイプのDIDOネットワークにクライアントを割り当てて、その間にハンドオフを可能にする方法を提案する。ネットワーク選択は、各クライアントの移動度のタイプに基づいている。クライアントの速度(v)は、以下の方程式[6]に従って最大ドップラーシフトに比例している(11)。
ここで、fdは最大ドップラーシフトであり、λはキャリア周波数に対応する波長であり、θは方向送信機−クライアントを示すベクトルと速度ベクトル間の角度である。
【0107】
一実施形態において、あらゆるクライアントのドップラーシフトは、ブラインド推定技術を通じて計算される。例えば、ドップラーシフトは、クライアントにRFエネルギを送ってドップラーレーダシステムと類似の反射された信号を解析することによって推定することができる。
【0108】
別の実施形態において、1つ又は複数のDIDOアンテナは、クライアントにトレーニング信号を送る。それらのトレーニング信号に基づいて、クライアントは、チャンネル利得のゼロ交差回数を数えるか、又はスペクトル解析を行うことのような技術を使用してドップラーシフトを推定する。一定の速度v及びクライアントの軌跡に対して、(11)の角速度vsinθは、いずれかのDIDOアンテナからのクライアントの相対距離に依存する場合があることが認められる。例えば、移動しているクライアントの近くのDIDOアンテナでは、遠いアンテナより大きい角速度及びドップラーシフトが得られる。一実施形態において、ドップラー速度は、クライアントからの異なる距離にある複数のDIDOアンテナから推定され、平均、重み付き平均又は標準偏差が、クライアントの移動度の指標として使用される。推定ドップラー指標に基づいて、DIDO BTSは、低ドップラー、又は高ドップラーネットワークにクライアントを割り当てるべきであるかを決定する。
【0109】
ドップラー指標は、周期的に全てのクライアントに対してモニタされてBTSに送り返される。1つ又は複数のクライアントがドップラー速度を変更した時に(すなわち、バスに乗っているクライアント対歩行中又は座っているクライアントに)、それらのクライアントは、移動度のレベルを満足できる異なるDIDOネットワークに動的に再割り当てされる。
【0110】
低速のクライアントのドップラーが高速物体の近く(例えば、高速道路の近く)にあることによる影響を受ける可能性があるが、ドップラーは、典型的には、それ自体身移動中であるクライアントのドップラーを遥かに下回る。従って、一実施形態において、クライアントの速度が推定され(例えば、GPSを使用してクライアント位置をモニタするなどの手段を使用することにより)、速度が低い場合に、クライアントは、低ドップラーネットワークに割り当てられ、速度が高い場合に、クライアントは、高ドップラーネットワークに割り当てられる。
【0111】
電力制御及びアンテナグループ分けの方法
電力制御を伴うDIDOシステムのブロック図を図17に示している。あらゆるクライアント(1、…,U)の1つ又は複数のデータストリーム(sk)が、DIDO事前符号化ユニットによって生成された重みにより乗算される。事前符号化データストリームには、入力チャンネル品質情報(CQI)に基づいて、電力コントローラにより計算される電力スケーリング係数が乗算される。CQIがDIDOBTSにクライアントからフィードバックされ、又はアップリンク−ダウンリンクチャンネル相互関係を仮定してアップリンクチャンネルから導出される。異なるクライアントのU個の事前符号化ストリームが、次に、M個のデータストリーム(tm)に、M個の送信アンテナの各々に対して1つに結合及び多重化される。最後に、ストリームtmが、デジタル/アナログ変換器(DAC)ユニット、高周波(RF)ユニット、電力増幅器(PA)ユニット及び最後にアンテナに送られる。
【0112】
電力制御ユニットは、全てのクライアントに対してCQIを測定する。一実施形態において、CQIは、平均SNR又はRSSIである。CQIは、伝播損失又はシャドーイングに基づいて異なるクライアントに対して変動する。電力制御方法は、異なるクライアントに対して伝送電力スケーリング係数Pkを調整し、異なるクライアントに対して生成される事前符号化データストリームにより乗算する。尚、クライアントの受信アンテナの数に基づいて、1つ又は複数のデータストリームをあらゆるクライアントに対して生成することができる。
【0113】
提案する方法の性能を評価するために、伝播損失及び電力制御パラメータを含む(5)に基づいて以下の信号モデルを定義する(12)。
ここで、k=1、…,U、Uはクライアントの数であり、SNR=Po/No、Poは平均送信電力であり、Noはノイズ電力であり、
は伝播損失/シャドーイング係数である。伝播損失/シャドーイングをモデル化するために、以下の簡略化したモデルを使用する(13)。
ここで、a=4は伝播損失指数であり、伝播損失がクライアントの指数と共に増加すると仮定する(すなわち、クライアントはDIDOアンテナからの距離が増大する位置にある)。
【0114】
図18は、異なるシナリオでの4つのDIDO送信アンテナ及び4つのクライアントを仮定してSER対SNRを示している。理想的な場合では、全てのクライアントが同じ伝播損失を有し(すなわち、a=0)、全てのクライアントに対してPk=1が得られると仮定する。正方形を有するプロットは、クライアントが異なる伝播損失係数を有し、電力制御がでない場合を指す。点を有する曲線は、同じシナリオ(伝播損失あり)から導出され、電力制御係数は、
であるように選択される。電力制御方法では、より多くの電力が、より高い伝播損失/シャドーイングを受けるクライアントのためのものであるデータストリームに割り当てられ、従って、電力制御がない場合と比較して9dBのSNR利得が得られる(この所定のシナリオに対しては)。
【0115】
米国連邦通信委員会(FCC)(及び他の国際的規制機関)は、電磁(EM)放射線への人体の露出を制限するために無線デバイスから送信することができる最大電力に関する制約を定義している。2種類の限度、すなわち、i)人々に柵、警告、又はラベルを通じて高周波(RF)発生源を完全に認識させている職業/管理環境下限度、及びii)露出に対する管理がない「一般大衆/非管理」限度がある〔2〕。
【0116】
異なる放出レベルが、異なるタイプの無線デバイスに対して定義される。一般的に、屋内/屋外用途に使用されるDIDO分散型アンテナは、〔2〕:「通常、ユーザ又はその近くの人の本体から20cm又はそれよりも多くに維持される放射構造と共に使用されると思われる固定ロケーション以外に使用されるように設計された送信デバイス」として定義される「モバイル」デバイスのFCCカテゴリに関する。
【0117】
「モバイル」デバイスのEM放出は、mW/cm2で表される最大許容露出(MPE)の観点から測定される。図19は、700MHzのキャリア周波数での送信電力の異なる値に対して、RF放射線源からの距離の関数としてのMPE電力密度を示している。典型的には人体から20cmの域よりも大きいと作動するデバイスに対してFCC「非管理」限度を満たすべき最大許容送信電力は、1wである。
【0118】
制限が緩い電力放出制約は、「一般大衆」から離れた屋上又は建物上に設けられる送信機に対して定義される。これらの「屋上送信機」に対して、FCCは、実効輻射電力(ERP)の観点から測定される1000Wのより緩い放出限度を定義している。
【0119】
以前のFCC制約に基づいて、一実施形態において、実用システムに向けて2種類のDIDO分散型アンテナを定義する。
・低電力(LP)送信機:どこでも、1W及び5Mbpsの消費者等級の広帯域の最大送信電力(例えば、DSL、ケーブルモデム、ファイバトゥザホーム(FTTH)であらゆる高さ(すなわち、屋内、又は屋外)に位置するバックホール接続性。
・高電力(HP)送信機:100W及び市販の等級広帯域(例えば、光ファイバリング)バックホールの送信電力で(DIDO無線リンクにわたって利用可能な収量と比較して有効に「無制限」データ転送速度で)ほぼ10メートルの高さでの屋上又は建物取り付け式アンテナ。
【0120】
尚、DSL又はケーブルモデム接続性を有するLP送信機は、低ドップラーDIDOネットワークの良好な候補であり(前の節においてで上述したように)、その理由は、クライアントは殆どは固定式であるか又は移動度が低いからである。市販のファイバ接続性を有するHP送信機は、クライアントのより高い移動度を許容することができ、かつ高ドップラーDIDOネットワークに使用することができる。
【0121】
異なるタイプのLP/HP送信機を有するDIDOシステムの性能に関する実際的な直観力がつくように、カリフォルニア州パロアルト中心部のDIDOアンテナ配置の実際的な事例を考える。図20aは、カリフォルニア州パロアルトのNLP=100低電力DIDO分散型アンテナのランダム分布を示している。図20bでは、50個のLPアンテナは、NHP=50個の高電力送信機で置換される。
【0122】
図20a〜図20bのDIDOアンテナ分布に基づいて、DIDO技術を使用するシステムに向けてパロアルトにおいて受信可能範囲地図を導出する。図21a及び図21bは、それぞれ、図20a及び図20bの構成に対応する2つの電力分布を示している。受電分布(dBmで表す)は、700MHzのキャリア周波数で3GPP規格[3]により定義された都市環境に対して伝播損失/シャドーイングモデルを仮定して導出される。HP送信機の50%を使用し、選択したエリアの受信可能範囲が改善することが認められる。
【0123】
図22a〜図22bは、以前の2つのシナリオの速度分布を示している。収量(Mbpsで表記)は、[4,5]で3GPPロングタームエボリューション(LTE)規格において定義された異なる変調符号化方式に対して電力閾値に基づいて導出される。全可のための帯域幅は、700MHzのキャリア周波数で10MHzに固定される。2つの異なる周波数割当計画、i)LP基地局だけに割り当てられる5MHzのスペクトル、ii)HP送信機に9MHz及びLP送信機に1MHzが考慮される。尚、典型的には、収量に限界があるDSLバックホール接続性のためにLP場にはより低い部帯域幅が割り当てられる。図22a〜図22bは、HP送信機の50%を使用する時に、図22aの2.4Mbpsから図22bの38Mbpsまで平均クライアント当たりのデータ転送速度を上げることによって速度分布を有意に増大させることができることを示している。
【0124】
次に、より高い電力があらゆる所定の時間に可能にされ、従って、図22bのDIDOシステムのダウンリンクチャンネルにわたって収量が増大するようにLP基地局の電力送信を制御するアルゴリズムを定義した。電力密度に関するFCC限度が〔2〕として経時的な平均に基づいて定義されることが認められる(14)。
ここで、
はMPE平均化時間に存在し、tnは電力密度Snでの放射線に対する露出期間に存在する。「管理環境下の」露出に対して、平均時間は、6分であり、一方、「非管理」露出に対して、30分まで増大される。次に、いずれの電源も、(14)の平均電力密度が「非管理」露出の30分の平均値に関するFCC限度を満たす限りMPE限度より大きい電力レベルで送信することが許容される。
【0125】
この解析に基づいて、DIDOアンテナ当たりの平均電力をMPE限度未満に維持しながら、瞬間的なアンテナ当たりの送信電力を増大させる適応電力制御方法を定義する。アクティブクライアントより多くの送信アンテナを有するDIDOシステムを考える。これは、DIDOアンテナは、廉価な無線デバイス(WiFiアクセスポイントと類似)として考えることができ、かつDSL、ケーブルモデム、光ファイバ又は他のインターネット接続性であるどこにでも設けることができることを考慮すると適切な仮定である。
【0126】
適応アンテナ当たりの電力制御を伴うDIDOシステムのフレームワークを図23に示している。マルチプレクサ234から現れるデジタル信号の振幅は、DACユニット235に送られている前に、電力スケーリング係数S1…,SMで動的に調整される。電力スケーリング係数は、CQI233に基づいて電力制御ユニット232により計算される。
【0127】
一実施形態において、Ng個のDIDOアンテナ群が定義される。あらゆる群は、少なくともアクティブクライアント(K)の数と同数のDIDOアンテナを含む。あらゆる所定の時点で、1つの群のみが、MPE限度(
)よりも大きい電力レベル(So)でクライアントに送信するNa>K個のアクティブDIDOアンテナを有する。本方法は、図24に示すラウンドロビンスケジューリング方針に従って全てのアンテナ群にわたって反復される。別の実施形態において、異なるスケジューリング法(すなわち、比例公平スケジューリング[8])は、誤り率又は収量性能を最適化するためにクラスター選択に使用される。
【0128】
ラウンドロビン電力割り当てを仮定し、(14)から
(15)として、あらゆるDIDOアンテナに対して平均送信電力を導出し、ここで、toは、アンテナ群がアクティブである期間に存在し、TMPE=30minは、FCC指針〔2〕により定義された平均時間に存在する。(15)の比率は、あらゆるDIDOアンテナからの平均送信電力がMPE限度(
)を満たすように定義される群の負荷時間率(DF)である。負荷時間率は、以下の定義に従ってアクティブクライアントの数、群、及び群当たりのアクティブアンテナの数に依存する(16)。
電力制御及びアンテナグループ分けを有するDIDOシステムにおいて得られたSNR利得(dB単位)は、
(17)として負荷時間率の関数として表される。(17)の利得は、全てのDIDOアンテナにわたるGdBの更に別の送信電力の代償として達成されることが認められる。一般的に、全てのNg群の全てのNaからの全送信電力は、
(18)として定義され、ここで、Pijは、
(19)によって示される平均的なアンテナ当たりの送信電力であり、Sij(t)は、j番目の群内のi番目の送信アンテナの電力スペクトル密度である。一実施形態において、(19)の電力スペクトル密度は、あらゆるアンテナが誤り率又は収量性能を最適化するように設計される。
【0129】
提案する方法の性能に関する何らかの直観力が得られるように、DIDOシステムで提供される無線インターネットサービスに登録する所定のカバレージエリア及び400のクライアント内の400のDIDO分散型アンテナを考える。あらゆるインターネット接続は、常時余す所なく利用されることは考えにくい。クライアントの10%があらゆる所定の時点で無線インターネット接続を能動的に使用すると仮定する。次に、400個のDIDOアンテナを各々Na=40アンテナのNg=10個の群に分割することができ、あらゆる群は、負荷時間率DF=0.1であらゆる所定の時点でK=40個のアクティブクライアントにサービスを提供する。この送信方式から生じるSNR利得は、全てのDIDOアンテナからの10dBの更に別の送信電力によって供給されたGdB=10log10(1/DF)=10dBである。しかし、平均的なアンテナ当たりの送信電力は一定であり、かつMPE限度内であることが認められる。
【0130】
図25は、アンテナグループ分けによる以前の電力制御の(符号化されていない)SER性能を米国特許第7,636,381号明細書の従来の固有モード選択と比較している。全ての方式における各々は、単一のアンテナが装備された4つのクライアントと共にBD事前符号化を使用する。SNRは、ノイズ電力に対する送信アンテナ当りの電力の比率(すなわち、アンテナ当りの送信SNR)を指す。DIDO4x4に示す曲線では、4つの送信アンテナ及びBD事前符号化を仮定する。正方形を有する曲線は、固有モード選択での2つの余分の送信アンテナ及びBDでのSER性能を示し、従来のBD事前符号化を凌いで10dBのSNR利得が得られる(1%のSERターゲットで)。アンテナグループ分け及びDF=1/10による電力制御により、同様に同じSERで10dBの利得が得られる。固有モード選択によりダイバーシティ利得のためにSER曲線の勾配が変えることが認められ、一方、この電力制御方法は、平均送信電力の増大のために左にSER曲線がずれる(同じ勾配を維持しながら)。比較のために、より大きい負荷時間率DF=1/50でのSERでは、DF=1/10と比較して更に別の7dBの利得が得られることが見出される。
【0131】
尚、本発明者の電力制御は、従来の固有モード選択方法よりも複雑性が低くなる場合がある。実際には、K個のチャンネル推定値のみがあらゆる所定の時点で必要とされるように、あらゆる群のアンテナIDを予め計算し、ルックアップテーブルを通じてDIDOアンテナとびクライアント間に共有することができる。固有モード選択に向けて、(K+2)個のチャンネル推定値が計算され、全てのクライアントに向けてあらゆる所定の時点でSERを最小にする固有モードを選択する更に別のコンピュータの処理が必要である。
【0132】
次に、いくつかの特別なシナリオにおいてCSIフィードバックオーバーヘッドを低減するためにDIDOアンテナグループ分けを伴う別の方法を説明する。図26aは、クライアント(点)が、複数のDIDO分散型アンテナ(十字記号)の対象になる1つのエリアにおいてランダムに広がっている1つのシナリオを示している。あらゆる送信−受信無線リンクにわたる平均電力を
(20)として計算することができ、ここで、Hは、DIDO BTSで利用可能であるチャンネル推定行列である。
【0133】
図26a〜図26cの行列Aは、1000個の事例にわたってチャンネル行列を平均化することによって数値的に得られる。2つの代替シナリオをそれぞれ図26b及び図26cに示すが、クライアントは、DIDOアンテナの部分集合の周りでまとめてグループ分けされ、遠くに位置するDIDOアンテナから取るに足りない電力を受電する。例えば、図26bは、ブロック対角行列Aが得られるアンテナの2つの群を示している。1つの極端なシナリオは、あらゆるクライアントが1つの送信機だけに非常に近くにあり、全ての他のDIDOアンテナからの電力が取るに足りないものになるように送信機が互いから遠く離れる方向にある時のものである。この場合に、DIDOリンクは複数のSISOリンクにおいて悪化し、Aは、図26cの場合と同様に対角行列である。
【0134】
以前の全ての3つのシナリオにおいて、BD事前符号化では、DIDOアンテナとクライアントの間に無線リンクにわたって異なる電力レベルに適合するように動的に事前符号化重みを調整する。しかし、DIDOクラスター内の複数の群を識別して、各群内においてのみDIDO事前符号化を操作することが有利である。この提案するグループ分け方法は、以下の利点が得られる。
・計算利得:DIDO事前符号化は、クラスター内のあらゆる群内においてのみ計算される。例えば、BD事前符号化が使用される場合に、特異値分解(SVD)は複雑性O(n3)を有し、nは、チャンネル行列Hの最小次元である。Hをブロック対角行列にすることができる場合に、SVDが、複雑性が低減されたあらゆるブロックに対して計算される。実際には、n=n1+n2であるようにチャンネル行列が次元n1及びn2で2つのブロック行列に分割された場合に、SVDの複雑性は、O(n13)+O(n23)<O(n3)であるに過ぎない。極端な場合に、Hが対角行列である場合に、DIDOリンクは複数のSISOリンクになり、SVD計算は不要である。
・低減されるCSIフィードバックオーバーヘッド:DIDOアンテナ及びクライアントが一実施形態において群に分割された時に、CSIは、同じ群内のみのクライアントからアンテナまで計算される。TDDシステムは、チャンネル相互関係を仮定することにより、アンテナグループ分けにより、チャンネル行列Hを計算すべきチャンネル推定値の数が低減する。CSIが無線リンク上でフィードバックされるFDDシステムは、アンテナグループ分けにより、DIDOアンテナとクライアント間の無線リンクにわたってCSIフィードバックオーバーヘッドの低減が更に得られる。
【0135】
DIDOアップリンクチャンネルの多重アクセス技術
本発明の一実施形態において、異なる多重アクセス技術が、DIDOアップリンクチャンネルに対して定義される。これらの技術は、CSIをフィードバックするか、又はアップリンクでクライアントからDIDOアンテナにデータストリームを送信するのに使用することができる。これ以降、フィードバックCSI及びデータストリームをアップリンクストリームと呼ぶ。
・多重入力多重出力(MIMO):アップリンクストリームは、オープンループ型MIMO多重化方式を通じてDIDOアンテナにクライアントから送信される。本方法は、全てのクライアントが時点/周波数同期化されると仮定する。一実施形態において、クライアント間の同期は、ダウンリンクからのトレーニングを通じて達成され、全てのDIDOアンテナは、同じ時点/周波数基準クロックにロックされると仮定される。尚、異なるクライアントでの遅延広がりの変動により、MIMOアップリンク方式の性能に影響を与える可能性がある異なるクライアントのクロック間のジッタが発生する可能性がある。クライアントがMIMO多重化方式を通じてアップリンクストリームを送った後に、受信DIDOアンテナは、同一チャンネル干渉を除去して個々にアップリンクストリームを復調するために、非線形(すなわち、最大尤度、ML)又は線形(すなわち、ゼロフォーシング、最小平均二乗誤差)受信機を使用することができる。
・時分割多重アクセス(TDMA):異なるクライアントは、異なる時間スロットに割り当てられる。あらゆるクライアントは、時間スロットが利用可能な時にアップリンクストリームを送る。
・周波数分割多重アクセス(FDMA):異なるクライアントは、異なるキャリア周波数に割り当てられる。マルチキャリア(OFDM)システムは、トーンの部分集合は、同時にアップリンクストリームを送信する異なるクライアントに割り当てられ、従って、待ち時間が低減する。
・符号分割多重アクセス(CDMA):あらゆるクライアントは、異なる擬似乱数に割り当てられ、クライアントにわたる直交性は、コード領域において達成される。
【0136】
本発明の一実施形態において、クライアントは、DIDOアンテナよりも非常に低い電力で送信する無線デバイスである。この場合に、DIDO BTSは、下位群にわたる干渉が最小にされるようにアップリンクSNR情報に基づいてクライアント下位群を定義する。あらゆる下位群内で、以前の多重アクセス技術では、時間領域、周波数領域、空間定義域、又はコード領域において直交チャンネルを作成するために使用され、従って、異なるクライアントにわたってアップリンク干渉が回避される。
【0137】
別の実施形態において、上述のアップリンク多重アクセス技術は、DIDOクラスター内の異なるクライアント群を定義するために、前の節に示したアンテナグループ分け方法と組み合わせて使用される。
DIDOマルチキャリアシステム内のリンクアダプテーションのシステム及び方法
【0138】
DIDOマルチキャリアシステム内のリンクアダプテーションのシステム及び方法
無線チャンネルの時間、周波数、及び空間選択度を利用するDIDOシステムのリンクアダプテーション方法は、米国特許第7,636,381号明細書に定義されている。無線チャンネルの時間/周波数選択度を利用するマルチキャリア(OFDM)DIDOシステム内のリンクアダプテーションの本発明の実施形態を以下に説明する。
【0139】
〔9〕において指数的に減衰する電力遅延プロフィール(PDP)又はSaleh−Valenzuelaモデルに従ってレイリーフェーディングチャンネルのシミュレーションを提供する。簡潔さを期すために、
として定義された多経路PDPを有する単一のクラスターチャンネルを仮定し、ここで、n=0…,L−1)は、チャンネルタップの指数である、Lは、チャンネルタップの数であり、
は、チャンネル遅延広がり(σDS)に反比例するチャンネル干渉ゾーン域幅の指標であるPDP指数である。βの低い値により、周波数非選択性チャンネルが得られ、一方、βの高い値により、周波数選択性チャンネルが得られる。(21)のPDPは、全てのLチャンネルタップのための全平均電力が単一であるように正規化される(22)。
図27は、DIDO 2x2システムに関する遅延領域又は瞬間的なPDP(上側プロット)及び周波数領域(下側プロット)にわたる低周波数選択性チャンネル(β=1を仮定する)の振幅を示している。第1の下付き文字つきはクライアントを示し、第2の下付き文字は送信アンテナを示している。高周波数選択チャンネル(β=0.1で)を図28に示している。
【0140】
次に、周波数選択性チャンネルにおけるDIDO事前符号化の性能を研究する。(1)内の信号モデルは(2)の条件を満たすと仮定してBDを通じたDIDO事前符号化重みを計算する。(2)の条件下で、(5)のDIDO受信信号モデルを再公式化する(23)。
【0141】
ここで、
は、ユーザkの実効チャンネル行列である。DIDO2x2に対して、クライアント当たりの1本のアンテナで、実効チャンネル行列は、図29及び図28の高周波数選択度(例えば、β=0,1で)を特徴とするチャンネルに対して示す周波数応答で1つの値に低減する。図29の実線は、クライアント1を指し、一方、点を有する線は、クライアント2を指す。図29のチャンネル品質メトリックに基づいて、チャンネル状態の変化条件に基づいて、動的にMCSを調整する時間/周波数領域リンクアダプテーション(LA)方法を定義する。
【0142】
本発明者は、AWGN及びレイリーフェーディングSISOチャンネル内の異なるMCSの性能を評価することによって始める。簡潔さを期すために、FEC符号化なしと仮定するが、以下のLA方法をFECを含むシステムに拡張することができる。
【0143】
図30は、異なるQAM方式(すなわち、4−QAM、16−QAM、64−QAM)のSERを示している。一般性を失わずに、符号化されていないシステムに対して1%のターゲットSERを仮定する。AWGNチャンネルにおいてそのターゲットSERを満たすべきSNR閾値は、3つの変調方式に対して、それぞれ、8dB、15.5dB、及び22dBである。レイリーフェーディングチャンネルでは、以前の変調方式のSER性能は、AWGN[13]よりも不良であることが公知であり、SNR閾値は、それぞれ、18.6dB、27.3dB、及び34.1dBである。DIDO事前符号化により、マルチユーザダウンリンクチャンネルが1組の平行したSISOリンクに変換されることが認められる。従って、SISOシステムに関する図30の場合と同じSNR閾値が、クライアント単位でDIDOシステムに適用される。更に、瞬間的なLAが実行される場合に、AWGNチャンネル内の閾値が使用される。
【0144】
DIDOシステムに関する提案するLA方法の重要な考え方は、チャンネルがリンク堅牢性が得られるように時間領域又は周波数領域のディープフェード(図28に示す)を受けた時に低いMCSの次数を使用することである。これに反して、チャンネルが大きい利得を特徴とする時に、LA方法は、周波数利用効率を増大させるためにより高いMCSの次数にスイッチングする。米国特許第7,636,381号明細書と比較した本出願の1つの寄与は、アダプテーションを可能にするメトリックとして(23)及び図29において実効チャンネル行列を使用することである。
【0145】
LA方法の一般的なフレームワークは、図31に示すが、以下のように定義される。
・CSI推定:3171で、DIDO BTSは、全てのユーザからのCSIを計算する。ユーザは、単一の又は複数の受信アンテナを装備することができる。
・DIDO事前符号化:3172で、BTSは全てのユーザに対してDIDO事前符号化重みを計算する。一実施形態において、BDは、これらの重みを計算するのに使用される。事前符号化重みは、トーン単位で計算される。
・リンク品質メトリック計算:3173で、BTSは、周波数領域リンク品質メトリックを計算する。OFDMシステムにおいて、メトリックはCSIから計算され、DIDO事前符号化重みが、あらゆるトーンに対して計算される。本発明の一実施形態において、リンク品質メトリックは、全てのOFDMトーンにわたる平均SNRである。本発明者は、LA1として本方法を定義する(平均SNR性能に基づいて)。別の実施形態において、リンク品質メトリックは、(23)の実効チャンネルの周波数応答である。本発明者は、周波数ダイバーシティを利用するためにLA2として本方法を定義する(トーン単位の性能に基づいて)。あらゆるクライアントが単一のアンテナを有する場合に、周波数領域実効チャンネルを図29に示している。クライアントが複数の受信アンテナを有する場合に、リンク品質メトリックは、あらゆるトーンに対して実効チャンネル行列のフロベニウスノルムとして定義される。代替的に、複数のリンク品質メトリックは、(23)の実効チャンネル行列の特異値としてあらゆるクライアントに対して定義される。
・ビットローディングアルゴリズム:3174で、リンク品質メトリックに基づいて、BTSは、異なるクライアント及び異なるOFDMトーンに対してMCSを決定する。LA1方法に向けて、同じMCSが、図30のレイリーフェーディングチャンネルのSNR閾値に基づいて全てのクライアント及び全てのOFDMトーンに使用される。レイリーフェーディングチャンネルLA2に向けて、異なるMCSが、チャンネル周波数ダイバーシティを利用するために異なるOFDMトーンに割り当てられる。
・事前符号化データ送信:3175で、BTSは、ビットローディングアルゴリズムから導出されたMCSを使用し、DIDO分散型アンテナからクライアントに事前符号化データストリームを送信する。1つのヘッダは、クライアントに異なるトーンに対してMCSを伝えるために事前符号化データに取り付けられる。例えば、8つのMCSが利用可能であり、かつOFDM符号がN=64トーンで定義された場合に、log2(8)*N=192ビットが、いずれかのクライアントに現在のMCSを伝えるのに必要とされる。4−QAM(2ビット/符号周波数利用効率)がそれらのビットを符号にマップするのに使用されると仮定し、192/2/N=1.5OFDM符号のみが、MCS情報をマップするのに必要とされる。別の実施形態において、複数のサブキャリア(又はOFDMトーン)が、サブバンドにグループ分けされ、同じMCSが、制御情報によるオーバヘッドを低減するために同じサブバンド内の全てのトーンに割り当てられる。更に、MCは、チャンネル利得(干渉時間に比例)の時間的変動に基づいて調整される。固定無線チャンネル(低いドップラー効果を特徴とする)において、MCがチャンネル干渉時間の小部分毎に再計算され、従って、制御情報に必要とされるオーバヘッドが低減される。
【0146】
図32は、上述のLA方法のSER性能を示している。比較のために、レイリーフェーディングチャンネル内のSER性能は、使用された3つのQAM方式の各々に対してプロットされている。LA2方法は、周波数領域内の実効チャンネルの変動にMCSを適合させ、従って、LA1と比較し、低いSNRに対して周波数利用効率において1.8bps/Hzの利得(すなわち、SNR=20dB)、SNRにおいて15dB利得(SNR>35dBに向けて)が得られる。
【0147】
マルチキャリアシステム内のDIDO事前符号化補間のシステム及び方法
DIDOシステムの計算の複雑性は、殆どは集中型プロセッサ又はBTSに局在化される。最も計算機的に高価な作業は、CSIからの全てのクライアントに関する事前符号化重みの計算である。BD事前符号化が使用させた時に、BTSは、システム内のクライアントの同数の特異値分解(SVD)作業を実行する必要がある。複雑性を低減する方法は、SVDがあらゆるクライアントに対して別々のプロセッサの上で計算される並列化された処理によるものである。
【0148】
マルチキャリアDIDOシステムにおいて、各サブキャリアは、平坦フェーディングに受け、SVDが、あらゆるサブキャリアにわたってあらゆるクライアントに対して実行される。明らかに、システムの複雑性は、サブキャリアの数と共に線形に増加する。例えば、1MHzの信号帯域幅を有するOFDMシステムでは、循環プレフィックス(L0)は、大きい遅延広がり[3]を有する屋外の都市マクロセル環境において符号間干渉を回避するために少なくとも8つのチャンネルタップ(すなわち、8マイクロ秒の持続時間)がなければならない。OFDM符号を生成するのに使用される高速フーリエ変換(FFT)のサイズ(NFFT)は、典型的には、データ転送速度の減量を低減するためにL0の倍数に設定される。NFFT=64である場合に、システムの有効周波数利用効率は、係数NFFT/(NFFT+L0)=89%により制限される。NFFTの値が増大するほど、DIDO前置符号化器でのより高い計算の複雑性の代償として、高い周波数利用効率が得られる。
【0149】
DIDO前置符号化器で計算の複雑性を低減する方法は、トーンの部分集合(パイロットトーンと呼ぶ)にわたってSVD作業を実行し、補間を通じて残りのトーンに対して事前符号化重みを導出することである。重み補間は、結果としてクライアント間干渉が発生する1つの誤差ファクタである。一実施形態において、最適重み補間法が、クライアント間干渉を低減するために使用され、誤り率性能が改善し、マルチキャリアシステム内の計算の複雑性が低減する。M個の送信アンテナ、U人のクライアント、及びクライアント当たりのN個の受信アンテナを有するDIDOシステムでは、他のクライアントuに対する0干渉を保証するk番目のクライアント(Wk)の事前符号化重みの条件は、
(24)として(2)から導出され、ここで、
は、システム内の他のDIDOクライアントに対応するチャンネル行列である。
【0150】
本発明の一実施形態において、重み補間法の目的関数は、
(25)として定義され、ここで、
は、ユーザkに向けて最適化すべき1組のパラメータであり、
は、重み補間行列であり、
は、行列のフロベニウスノルムを示している。最適化問題は、
(26)として公式化され、ここで、
は、最適化問題の実現可能集合であり、
は、最適解である。
【0151】
(25)内の目的関数が、1つのOFDMトーンに対して定義される。本発明の別の実施形態において、目的関数は、補間すべき全てのOFDMトーンに対して行列の(25)のフロベニウスノルムの線形結合として定義される。別の実施形態において、OFDMスペクトルは、トーンの部分集合に分割され、最適解は、
(27)によって与えられ、ここで、nは、OFDMトーン指数であり、Aは、トーンの部分集合である。
【0152】
(25)の重み補間行列
は、1組のパラメータ
の関数として表される。最適な1組が(26)又は(27)に従って決定された状態で、最適重み行列が計算される。本発明の一実施形態において、所定のOFDMトーンnの重み補間行列は、パイロットトーンの重み行列の線形結合として定義される。単一のクライアントを有するビームパルスフォーミングシステムの重み補間関数の一例は、〔11〕において定義されている。DIDOマルチクライアントシステムでは、本発明者は、重み補間行列を
(28)として書き、0≦l≦(L0−1)であり、L0はパイロットトーンの数であり、
として
である。(28)の重み行列は、次に、あらゆるアンテナからの単一電力送信を保証するために
であるように正規化される。N=1(クライアント当たりの単一の受信アンテナ)である場合に、(28)の行列は、そのノルムに関して正規化されるベクトルになる。本発明の一実施形態において、パイロットトーンは、OFDMトーンの範囲で均一に選択される。別の実施形態において、パイロットトーンは、補間エラーを最小にするためにCSIに基づいて適応的に選択される。
【0153】
本発明者は、本特許出願の提案するシステム及び方法に対する〔11〕のシステム及び方法の重要な差は、目的関数であることを認めている。特に、〔11〕のシステムは、複数の送信アンテナ及び単一のクライアントを仮定し、従って、関連の方法は、クライアントに対して受信SNRを最大にするためにチャンネルによる事前符号化重みの積を最大にするように設計される。しかし、この方法は、マルチクライアントシナリオでは機能せず、その理由は、補間誤差によるクライアント間干渉が発生するからである。これとは対照的に、本出願の方法は、クライアント間干渉を最小にするように設計され、従って、全てのクライアントに対して誤り率性能が改善する。
【0154】
図33は、NFFT=64及びL0=8でのDIDO2x2システムに関するOFDMトーン指数の関数としての(28)での行列の入力を示している。チャンネルPDPは、β=1で(21)のモデルに従って生成され、チャンネルは、8つのチャンネルタップのみから構成される。L0は、チャンネルタップの数よりも大きいように選択すべきであることが認められる。図33内の実線は、理想的な関数を表し、一方、点線は、補間された関数である。補間された重みは、(28)の定義に従ってパイロットトーンの理想的な重みに適合する。残りのトーンにわたって計算された重みは、推定誤差のために理想的な場合だけに近似する。
【0155】
重み補間法を実行する方法は、(26)において実現可能集合
にわたる全数探索を通じたものである。探索の複雑性を低減するために、範囲[0、2π]において均一にP個の値に実現可能集合を量子化する。図34は、L0=8、M=Nt=2の送信アンテナ及び変数のPに関するSNR対SERを示している。量子化レベルの数が増加する時に、SER性能が改善する。事例P=10は、探索件数の減少のために計算の複雑性が遥かに下回るようにP=100の性能に接近することが認められる。
【0156】
図35は、異なるDIDO次数及びL0=16の補間法のSER性能を示している。クライアントの数は、送信アンテナの数と同じであり、あらゆるクライアントは、単一のアンテナを装備すると仮定する。クライアントの数が増加する時に、SER性能は、重み補間誤差によって生成されたクライアント間干渉の増加のために低下する。
【0157】
本発明の別の実施形態において、(28)のもの以外の重み補間関数が使用される。例えば、線形予想自己回帰モデル[12]は、チャンネル周波数相関の推定に基づいて異なるOFDMトーンにわたって重みを補間するのに使用することができる。
【0158】
参考文献
【0159】
[1]「分散型アンテナ無線通信のシステム及び方法」という名称の2009年12月2日出願のA.Forenza及びS.G.Perlmanの米国特許出願出願番号第12/630,627号明細書。
【0160】
[2]FCC、「無線周波数電磁場に対する人体露出のFCC指針遵守の評価」、OET速報65、1997年01版、1997年8月。
【0161】
[3]3GPP、「空間チャンネルモデルAHG(3GPP及び3GPP2からのアドホック結合)」、SCM、テキストV6.0、2003年4月22日。
【0162】
[4]3GPP TR 25.912:「進化型UTRA及びUTRANのための達成可能性研究」、V9.0.0(2009−10)。
【0163】
[5]3GPP TR 25.913:「進化型UTRA(E−UTRA)及び進化型UTRAN(E−UTRAN)要件」、V8.0.0(2009−01)。
【0164】
[6]W.C.Jakes著「マイクロ波移動通信」、IEEEプレス、1974年。
【0165】
[7]K.K.Wong他著「マルチユーザMIMOアンテナシステムのための同時チャンネル直交化」、無線通信に関するIEEE論文集、第2巻、773〜786頁、2003年7月。
【0166】
[8]P.Viswanath他著「ダンプアンテナを使用する2次利用者が1次利用者を認識したビームパルスフォーミング」、情報理論に関するIEEE論文集、第48巻、1277〜1294頁、2002年6月。
【0167】
[9]A.A.M.Saleh他著「屋内多経路伝播統計モデル」、IEEE学会論文誌、通信における選択エリア、第195巻、SAC−5、第2号、128〜137頁、1987年2月。
【0168】
[10]A.Paulraj他著「時空無線通信入門」、ケンブリッジ大学出版部、米国ニューヨーク州ニューヨーク西20番街40、2003年。
【0169】
[11]J.Choi他著「フィードバック限界のあるMIMO−OFDMの補間ベースの送信ビームパルスフォーミング」、信号処理に関するIEEE論文集、第53巻、第11号、4125〜4135頁、2005年11月。
【0170】
[12]I.Wong他著「適応OFDMシステムの長距離チャンネル予想」、IEEE講演論文集、2006年、「信号、システム、及びコンピュータに関するアシロマ会議」、第1巻、723〜736頁、米国カリフォルニア州パシフィックグローブ、2004年11月7〜10日。
【0171】
[13]J.G.Proakis著「通信システム工学」、Prentice Hall、1994年。
【0172】
[14]B.D.Van Veen他著「ビームパルスフォーミング:空間フィルタリング応用の自在手法」、IEEE ASSP雑誌、1988年4月。
【0173】
[15]R.G.Vaughan著「携帯での最適結合に関して」、車両技術に関するIEEE論文集、第37巻、第4号、181〜188頁、1988年11月。
【0174】
[16]F.Qian著「相関混信阻止の部分適応ビームパルスフォーミング」、信号処理に関するIEEE論文集、第43巻、第2号、506〜515頁、1995年2月19日。
【0175】
[17]H.Krim他著「20年にわたる配列信号処理研究」、IEEE信号処理雑誌、67〜94頁、1996年7月。
【0176】
[19]W.R.Remleyの「デジタルビームパルスフォーミングシステム」、米国特許第4,003,016号明細書、1977年1月。
【0177】
[18]R.J.Masakの「ビームパルスフォーミング/ヌルステアリングアダプティブアレイ」、米国特許第4,771,289号明細書、1988年9月。
【0178】
[20]K.−B.Yu他の「モノパルス比角度推定精度を維持ながら主ローブ及び複数のサイドローブレーダージャマーをゼロにする適応デジタルビームパルスフォーミングアーキテクチャ及びアルゴリズム」、米国特許第5,600,326号明細書、1997年2月19日。
【0179】
[21]H.Boche他著「マルチユーザビームパルスフォーミングの異なる事前符号化/復号戦略の解析」、IEEE車両技術会議、第1巻、2003年4月。
【0180】
[22]M.Schubert他著「「結合」ダーティーペーパー事前符号化及びダウンリンクビームパルスフォーミング」、第2巻、536〜540頁、2002年12月。
【0181】
[23]H.Boche他著「アップリンク及びダウンリンクビームパルスフォーミングの一般二重性理論」、第1巻、87〜91頁、2002年12月。
【0182】
[24]K.K.Wong、R.D.Murch、K.B.Letaief共著「マルチユーザMIMOアンテナシステムのための同時チャンネル直交化」、無線通信に関するIEEE論文集、第2巻、773〜786頁、2003年7月。
【0183】
[25]Q.H.Spencer、A.L.Swindlehurst、M.Haardt共著「マルチユーザMIMOチャンネル内のダウンリンク空間多重化のゼロフォーシング方法」、信号処理に関するIEEE論文集、第52巻、461〜471頁、2004年2月。
【0184】
II.本出願の開示
他のユーザに対する干渉を抑止しながら所定のユーザとの無線リンクを作成するために協働して作動する複数の分散型送信アンテナを使用する無線高周波(RF)通信システム及び方法を以下に説明する。異なる送信アンテナにわたる調整が、ユーザクラスター化を通じて可能にされる。ユーザクラスターは、信号が確実に所定のユーザによって検出することができる送信アンテナ(すなわち、ノイズ又は干渉レベルよりも大きい受信信号強度)の部分集合である。システム内のあらゆるユーザが、自分のユーザクラスターを定義する。同じユーザクラスター内の送信アンテナによって送られた波形は、ターゲットユーザのロケーションでRFエネルギをそれらのアンテナにより到達可能なあらゆる他のユーザのロケーションでゼロRF干渉の点を作成するためにコヒーレントに結合される。
でそれらのM個のアンテナにより到達可能な1人のユーザクラスター及びK人のユーザ内のM個の送信アンテナを有するシステムを考える。送信機は、M個の送信アンテナとK人のユーザ間のCSI(
)を認識していると仮定する。簡潔さを期すために、あらゆるユーザは、単一のアンテナが装備されていると仮定するが、同じ方法をユーザ当たり複数の受信アンテナに拡張することができる。
としてM個の送信アンテナからK人のユーザまでのチャンネルベクトル(
)を結合することによって得られるチャンネル行列Hを考える。ユーザkに対してRFエネルギ、全ての他のK−1ユーザに対してゼロRFエネルギを作成する事前符号化重み(
)を以下の条件:
を満たすように計算し、ここで、
は、行列Hのk番目の横列を除去することによって得られるユーザkの実効チャンネル行列であり、
は、全てのゼロ入力を有するベクトルである。
【0185】
一実施形態において、無線システムは、DIDOシステムであり、ユーザクラスター化は、ユーザクラスター内にあるアンテナにより到達可能なあらゆる他のユーザに対する干渉を事前に相殺しながら、ターゲットユーザとの無線通信リンクを作成するために使用される。米国特許出願出願番号第12/630,627号明細書において、以下を含むDIDOシステムが説明されている。
・DIDOクライアント:1つ又は複数のアンテナを装備したユーザ端末。
・DIDO分散型アンテナ:複数のユーザに事前符号化データストリームを送信するために協働して作動し、従って、ユーザ間干渉が抑止される送受信機基地局。
・DIDO基地送受信機局(BTS):DIDO分散型アンテナに事前符号化された波形を生成する集中型プロセッサ。
・DIDO基地局ネットワーク(BSN):DIDO分散型アンテナに又は他のBTSにBTSを接続する有線バックホール。DIDO分散型アンテナは、BTS又はDIDOクライアントのロケーションに対する空間分布に基づいて異なる部分集合にグループ分けされる。図36に示すように、3つのタイプのクラスターを定義する。
・スーパークラスター3640:全てのBTSとそれぞれのユーザ間の往復待ち時間がDIDO事前符号化ループの制約内であるように、1つ又は複数のBTSに接続したDIDO分散型アンテナの組である。
・DIDOクラスター3641:同じBTSに接続したDIDO分散型アンテナの組であり、スーパークラスターが1つのBTSのみを含む時に、その定義はDIDOクラスターと一致する。
・ユーザクラスター3642:所定のユーザに協働で事前符号化データを送信するDIDO分散型アンテナの組である。
【0186】
例えば、BTSは、BSNを通じて他のBTS及びDIDO分散型アンテナに接続したローカルハブである。BSNは、デジタル加入者回線(DSL)、ADSL、VDSL[6]、ケーブルモデム、ファイバリング、T1線、光同軸混成(HFC)ネットワーク、及び/又は固定無線(例えば、WiFi)を含むがこれらに限定されない様々なネットワーク技術で構成することができる。同じスーパークラスター内の全てのBTSは、往復待ち時間がDIDO事前符号化ループ内であるように、BSNを通じてDIDO事前符号化に関する情報を共有する。
【0187】
図37では、点はDIDO分散型アンテナを示し、十字記号はユーザであり、破線は、それぞれ、ユーザU1及びU8のユーザクラスターを示している。以下に説明する方法は、ユーザクラスターの内側又は外側のあらゆる他のユーザ(U2−U8)に対してゼロRFエネルギの点を作成しながらターゲットユーザU1との通信リンクを作成するように設計される。
【0188】
本発明者は、ゼロRFエネルギの点がDIDOクラスターとの間の重なり合うゾーンの干渉を除去するために作成される類似の方法を〔5〕で提案した。余分のアンテナが、クラスター間干渉を抑止しながらDIDOクラスター内のクライアントに信号を送信するのに必要とされている。本出願において提案する方法の実施形態においては、DIDOクラスター間干渉を除去しようとはせず、むしろ、クラスターは、クライアント(すなわち、ユーザクラスター)と結びついて、干渉がその隣接内のあらゆる他のクライアントに対して生成されない(又は干渉は取るに足りない)ことを保証すると仮定する。
【0189】
提案する方法に関連の1つの考え方は、大きい伝播損失のために、ユーザクラスターから十分に遠いユーザは、送信アンテナからの放射線による影響を受けていないことである。ユーザクラスターに近いか又はユーザクラスター内のユーザは、事前符号化のために干渉のない信号を受信する。更に、条件
が満たされるように、更に別の送信アンテナをユーザクラスターに追加することができる(図37に示すように)。
【0190】
ユーザクラスター化を使用する方法の実施形態は、以下の段階から構成される。
a.リンク品質測定:あらゆるDIDO分散型アンテナ及びあらゆるユーザとの間のリンク品質をBTSに報告する。リンク品質は、信号対ノイズ比(SNR)又は信号対干渉ノイズ比(SINR)から構成される。一実施形態において、DIDO分散型アンテナは、トレーニング信号を送信し、ユーザは、そのトレーニングに基づいて受信信号品質を推定する。トレーニング信号は、ユーザが異なる送信機にわたって区別することができるように時間領域、周波数領域、又はコード領域において直交であるように設計される。代替的に、DIDOアンテナは、1つの所定の周波数(すなわち、ビーコンチャンネル)で狭帯域信号(すなわち、単一のトーン)を送信し、ユーザは、そのビーコン信号に基づいてリンク品質を推定する。1つの閾値は、図38aに示すように無事にデータを復調するようにノイズレベルよりも大きい最小限の信号振幅(又は電力)として定義される。この閾値よりも小さいあらゆるリンク品質メトリック値は、ゼロであるように仮定される。リンク品質メトリックは、有限数のビットにわたって量子化され、送信機にフィードバックされる。異なる実施形態において、トレーニング信号又はビーコンは、ユーザから送られて、リンク品質が、アップリンク(UL)とダウンリンク(DL)伝播損失間の相互関係を仮定してDIDO送信アンテナ(図38bの場合と同様に)で推定される。尚、伝播損失相互関係は、UL及びDL周波数帯域が比較的近い時に、時分割複信(TDD)システム及び周波数分割複信(FDD)システムでは現実的な仮定である(UL及びDLのチャンネルが同じ周波数である状態で)。リンク品質メトリックに関する情報は、図37に示すように、全てBTSが異なるDIDOクラスターにわたってあらゆるアンテナ/ユーザの対間にリンク品質を認識するようにBSNを通じて異なるBTSにわたって共有される。
b.ユーザクラスターの定義:DIDOクラスター内の全ての無線リンクのリンク品質メトリックは、BSNを通じて全てのBTSにわたって共有されるリンク品質行列への入力である。図37のシナリオのリンク品質行列の一例を図39に示している。リンク品質行列は、ユーザクラスターを定義するのに使用される。例えば、図39は、ユーザU8に関するユーザクラスターの選択を示している。ユーザU8に対する非ゼロリンク品質メトリック(すなわち、アクティブ送信機)を有する送信機の部分集合がまず識別される。これらの送信機は、ユーザU8のユーザクラスターをポピュレートする。次に、他のユーザへのユーザクラスター内の送信機からの非ゼロ入力を含む部分行列が選択される。尚、リンク品質メトリックは、ユーザクラスターを選択するためにのみ使用されるので、2ビットのみで量子化することができ(すなわち、図38において閾値よりも大きいか又は下回る状態を識別するために)、従って、フィードバックオーバーヘッドが低減される。
【0191】
別の例をユーザU1に対して図40に示している。この場合に、アクティブ送信機の数は、部分行列においてユーザの数より低く、従って、条件に違反するものである。従って、1つ又はそれよりも多くの列がその条件を満たすために部分行列に追加される。送信機の数がユーザの数よりも大きい場合に、余分のアンテナをダイバーシティ方式(すなわち、アンテナ又は固有モード選択)に使用することができる。
【0192】
更に別の例をユーザU4に対して図41に示している。部分行列を2つの部分行列の組合せとして取得することができることが認められる。
c.BTSへのCSI報告:ユーザクラスターが選択されると、ユーザクラスター内の全ての送信機からそれらの送信機が到達するあらゆるユーザへのCSIが、全てのBTSに対して利用可能にされる。CSI情報は、BSNを通じて全てのBTSにわたって共有される。TDDシステムは、UL/DLチャンネル相互関係を利用し、ULチャンネルでCSIをトレーニングから導出することができる。フィードバック量を低減するために、FDDシステムは、全てのユーザからのBTSへのフィードバックチャンネルが必要である。リンク品質行列の非ゼロ入力に対応するCSIだけがフィードバックされる。
d.DIDO事前符号化:最後に、DIDO事前符号化は、異なるユーザにサービスを提供する部分行列がクラスター化されるあらゆるCSIに適用される(例えば、関連の米国特許出願に説明されているように)。一実施形態において、実効チャンネル行列
の特異値分解(SVD)が計算され、かつユーザkの事前符号化重み
が、
のヌル部分空間に対応する右特異ベクトルとして定義される。代替的に、M>Kであり、かつSVDが
として実効チャンネル行列を分解する場合に、ユーザkのDIDO事前符号化重みが、以下によって示される
ここで、
は、
のヌル部分空間の特異ベクトルである列を有する行列である。基本的な線形代数による考察から、行列
のヌル部分空間内の右特異ベクトルは、ゼロ固有値に対応するCの固有ベクトルに等しい。
ここで、実効チャンネル行列は、SVDに従って
として分解されることが認められる。次に、
のSVDの計算の1つの代案は、Cの固有値分解を計算することである。べき乗法のような固有値分解を計算するいくつかの方法がある。Cのヌル部分空間に対応する固有ベクトルにのみ興味があるので、反復により説明された逆べき乗法を使用する。
ここで、第1の反復でのベクトル(ui)は、ランダムベクトルである。ヌル部分空間の固有値(λ)が既知(すなわち、ゼロ)であることを考慮すると、逆べき乗法では、収束すべき反復は1回しか必要なく、従って、計算の複雑性が低減される。次に、
として事前符号化重みベクトルを書き、ここで、
は、1に等しい真の入力を有するベクトルである(すなわち、事前符号化重みベクトルは、
の列の合計である)。DIDO事前符号化計算には、必要とされる行列反転は1回である。シュトラッセンのアルゴリズム〔1〕又はCoppersmith−Winogradのアルゴリズム[2,3]のような行列反転の複雑性を低減するいくつかの数値解法がある。Cは本質的にエルミート行列であるので、代替解決法は、[4、節11.4]の方法に従って実数部及び虚数部においてCを分解して実行列の行列反転を計算することである。
【0193】
提案する方法及びシステムの別の特徴は、再構成可能度である。クライアントが図42において異なるDIDOクラスターを横切る時に、ユーザクラスターはその動きに追随する。換言することは、送信アンテナの部分集合は、クライアントが位置を変えると、絶えず更新され、実効チャンネル行列(及び対応する事前符号化重み)が再計算される。
【0194】
本明細書で提案する方法は、図36においてスーパークラスター内で機能し、その理由は、BSNを通じたBTS間のリンクは、低待ち時間でなければならないからである。異なるスーパークラスターの重なり合うゾーンの干渉を抑止するために、DIDOクラスターとの間の干渉ゾーンにおいてゼロRFエネルギの点を作成するために余分のアンテナを使用する〔5〕の方法を使用することができる。
【0195】
用語「ユーザ」及び「クライアント」は、本明細書で交換可能に使用されることに注意すべきである。
【0196】
参考文献
[1]S.Robinson著「行列乗算の最適アルゴリズムに向けて」、SIAMニュース、第38巻、第9号、2005年11月。
【0197】
[2]D.Coppersmith及びS.Winograd共著「等差数列を通じた行列乗算」、J.Symb.Comp.第9巻、251〜280頁、1990年。
【0198】
[3]H.Cohn、R.Kleinberg、B.Szegedy、C.Umans共著「行列乗算の集団理論アルゴリズム」、379〜388頁、2005年11月。
【0199】
[4]W.H.Press、s.a.Teukolsky、W.T.Vetterling、B.P.Flannery共著「Cの数値計算レシピ:科学技術計算技術」、ケンブリッジ大学出版部、1992年。
【0200】
[5]A.Forenza及びS.G.Perlman共著「干渉管理、ハンドオフ、電力制御、及び分散入力分散出力(DIDO)通信システム内のリンクアダプテーション」という名称の2010年6月16日出願の米国特許出願出願番号第12/802,988号明細書。
【0201】
[6]Per−Erik Eriksson及びBjorn Odenhammar共著「VDSL2:次期重要広帯域技術」、Ericssonレビュー第1号、1、2006年。
【0202】
本発明の実施形態は、上述のような様々な段階を含むことができる。これらの段階は、汎用又は専用プロセッサにある一定の段階を行わせる機械実行可能命令で実施することができる。例えば、基地局/AP内の様々な構成要素及び上述のクライアントデバイスは、汎用又は専用プロセッサの上で実行されるソフトウエアとして実施することができる。本発明の関連する面を不明瞭にすることを回避するために、コンピュータメモリ、ハードドライブ、入力デバイスのような様々な公知のパーソナルコンピュータ構成要素は図から割愛した。
【0203】
代替的に、一実施形態において、本明細書に示す様々な機能モジュール及び関連の段階は、特定用途向け集積回路(「ASIC」)のような段階を実行するハードワイヤード論理を含む所定のハードウエア構成要素により、又はプログラムされたコンピュータ構成要素及びカスタムハードウエア構成要素のあらゆる組合せによって実行することができる。
【0204】
一実施形態において、上述の符号化、変調、及び信号処理論理回路903のような所定のモジュールは、テキサスインストルメンツのTMS320xアーキテクチャを使用して(例えば、TMS320C6000、TMS320C5000...のような)DSPのようなプログラマブルデジタル信号プロセッサ(「DSP」)(又はDSPの群)上で実行することができる。この実施形態におけるDSPは、例えば、PCIカードのようなパーソナルコンピュータへの添加カード内に埋め込むことができる。言うまでもなく、依然として本発明の根本的な原理を遵守しながら様々な異なるDSPアーキテクチャを使用することができる。
【0205】
本発明の様々な実施形態は、機械実行可能命令を格納する機械可読媒体として提供することができる。機械可読媒体は、フラッシュメモリ、光ディスク、CD−ROM、DVD ROM、RAM、EPROM、EEPROM、磁気カード又は光学カード、又は電子命令の格納に適するあらゆる他のタイプの機械可読媒体を含むことができるがこれらに限定されない。例えば、本発明は、通信リンク(例えば、モデム又はネットワーク接続)を通じてキャリア又は他の伝播媒体内で実施されるデータ信号として、リモートコンピュータ(例えば、サーバ)から要求側コンピュータ(例えば、クライアント)に転送することができるコンピュータプログラム製品としてダウンロードすることができる。
【0206】
以上の説明を通じて、解説を目的として本発明を完全に理解することができるように多くの詳細を示した。しかし、これらの特定の詳細の一部がなくてもシステム及び方法を実施することができることは当業者には明らかであろう。従って、本発明の範囲及び精神は、特許請求の範囲に関連して判断すべきである。
【0207】
更に、以上の説明を通じて、本発明をより完全に理解することができるように多くの文献を引用した。これらの引用文献の全ては、その引用により本出願に組み込まれている。
【符号の説明】
【0208】
DIDO 分散入力分散出力
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
【図8】
【図9】
【図10】
【図11】
【図12】
【図13】
【図14】
【図15】
【図16】
【図17】
【図18】
【図19】
【図20a】
【図20b】
【図21a】
【図21b】
【図22a】
【図22b】
【図23】
【図24】
【図25】
【図26a】
【図26b】
【図26c】
【図27】
【図28】
【図29】
【図30】
【図31】
【図32】
【図33】
【図34】
【図35】
【図36】
【図37】
【図38a】
【図38b】
【図39】
【図40】
【図41】
【図42】