(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】2019205045
(43)【公開日】20191128
(54)【発明の名称】光通信システム、光送信機及び光受信機
(51)【国際特許分類】
   H04B 10/516 20130101AFI20191101BHJP
   H04B 10/69 20130101ALI20191101BHJP
   H04L 27/34 20060101ALI20191101BHJP
【FI】
   !H04B10/516
   !H04B10/69
   !H04L27/34
【審査請求】未請求
【請求項の数】7
【出願形態】OL
【全頁数】24
(21)【出願番号】2018098279
(22)【出願日】20180522
(71)【出願人】
【識別番号】000004226
【氏名又は名称】日本電信電話株式会社
【住所又は居所】東京都千代田区大手町一丁目5番1号
(74)【代理人】
【識別番号】110001634
【氏名又は名称】特許業務法人 志賀国際特許事務所
(72)【発明者】
【氏名】中村 政則
【住所又は居所】東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内
(72)【発明者】
【氏名】岡本 聖司
【住所又は居所】東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内
(72)【発明者】
【氏名】山崎 悦史
【住所又は居所】東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内
(72)【発明者】
【氏名】木坂 由明
【住所又は居所】東京都千代田区大手町一丁目5番1号 日本電信電話株式会社内
【テーマコード(参考)】
5K102
【Fターム(参考)】
5K102AA61
5K102AH02
5K102AH24
5K102AH31
5K102RD25
5K102RD28
(57)【要約】
【課題】簡易な構成でシンボルの出現確率を任意に調整することが可能である光通信システム、光送信機及び光受信機を提供する。
【解決手段】光通信システムであって、シリアル・パラレル変換部は、対数値により定まる本数の系列群のビット系列と、最上位系列群のビット系列とを出力し、変換部は、自変換部に入力された系列群のビット系列を、0の出現確率又は1の出現確率が所定の確率であるビット系列に変換し、選択部は、自選択部よりも上位の変換部によって出現確率が変換されたビット系列を取得し、取得されたビット系列に応じて、自選択部よりも上位の系列群の他選択部へのシンボルの出力順を選択し、乗算部は、最上位系列群のビット系列に応じて、最上位の選択部によって選択されたシンボルを表す値に数を乗算し、送信部は、数の乗算結果に基づく光信号を送信し、光受信機は、受信部と、復調部とを有し、受信部は、光信号を受信し、復調処理を実行する。
【選択図】図1
【特許請求の範囲】
【請求項1】
光送信機と光受信機とを備える光通信システムであって、
前記光送信機は、シリアル・パラレル変換部と、出現確率が互いに異なるシンボルの候補数の対数値に応じた個数の変換部及び選択部と、乗算部と、送信部とを有し、
前記シリアル・パラレル変換部は、前記対数値により定まる本数の系列群のビット系列と、最上位系列群のビット系列とを出力し、
前記変換部は、自変換部に入力された前記系列群のビット系列を、0の出現確率又は1の出現確率が所定の確率であるビット系列に変換し、
前記選択部は、自選択部よりも上位の前記変換部によって前記出現確率が変換されたビット系列を取得し、取得されたビット系列に応じて、自選択部よりも上位の前記系列群の他選択部への前記シンボルの出力順を選択し、
前記乗算部は、最上位系列群のビット系列に応じて、最上位の前記選択部によって選択された前記シンボルを表す値に数を乗算し、
前記送信部は、前記数の乗算結果に基づく光信号を送信し、
前記光受信機は、受信部と、復調部とを有し、
前記受信部は、前記光信号を受信し、
前記復調部は、受信された前記光信号に応じて生成された電気信号に対して復調処理を実行する、
光通信システム。
【請求項2】
前記光送信機は、
前記変換部と前記選択部と前記乗算部とを有する2個の変調部と、虚数変換部と、多重部とを備え、
前記虚数変換部は、第1の前記変調部から出力された実数の前記シンボルの列を、虚数の前記シンボルの列に変換し、
前記多重部は、第2の前記変調部から出力された実数の前記シンボルの列と、虚数の前記シンボルの列とを多重する、
請求項1に記載の光通信システム。
【請求項3】
シリアル・パラレル変換部と、出現確率が互いに異なるシンボルの候補数の対数値に応じた個数の変換部及び選択部と、乗算部と、送信部とを備える光送信機であって、
前記シリアル・パラレル変換部は、前記対数値により定まる本数の系列群のビット系列と、最上位系列群のビット系列とを出力し、
前記変換部は、自変換部に入力された前記系列群のビット系列を、0の出現確率又は1の出現確率が所定の確率であるビット系列に変換し、
前記選択部は、自選択部よりも上位の前記変換部によって前記出現確率が変換されたビット系列を取得し、取得されたビット系列に応じて、自選択部よりも上位の前記系列群の他選択部への前記シンボルの出力順を選択し、
前記乗算部は、最上位系列群のビット系列に応じて、最上位の前記選択部によって選択された前記シンボルを表す値に数を乗算し、
前記送信部は、前記数の乗算結果に基づく光信号を送信する、
光送信機。
【請求項4】
前記変換部と前記選択部と前記乗算部とを有する2個の変調部と、虚数変換部と、多重部とを備え、
前記虚数変換部は、第1の前記変調部から出力された実数の前記シンボルの列を、虚数の前記シンボルの列に変換し、
前記多重部は、第2の前記変調部から出力された実数の前記シンボルの列と、虚数の前記シンボルの列とを多重する、
請求項3に記載の光送信機。
【請求項5】
前記選択部は、2次元の複素平面における振幅方向に配置された複数のシンボルの候補から、送信される光信号のシンボルを選択する、請求項3又は請求項4に記載の光送信機。
【請求項6】
前記乗算部は、送信される光信号のシンボルを表す値に実数を乗算する、請求項3から請求項5のいずれか一項に記載の光送信機。
【請求項7】
請求項3から請求項6のいずれか一項に記載の光送信機から送信された光信号を受信する受信部と、
前記光信号に応じて生成された電気信号に対して復調処理を実行する復調部と
を備える光受信機。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信システム、光送信機及び光受信機に関する。
【背景技術】
【0002】
同相(In-phase)軸と直交位相(Quadrature)軸とを含む平面(IQ平面)における、シンボルの出現確率の分布を不均一化する変調技術(以下「不均一化変調技術」という。)が、光伝送の長距離化に向けて注目されている(非特許文献1参照)。64QAM(64 Quadrature Amplitude Modulation)等の変調処理を実行する光送信機は、IQ平面におけるシンボルの出現確率の分布が不均一になるように、送信される光信号のシンボルを選択する。ここで、光送信機は、振幅の小さいシンボルの出現確率が振幅の大きいシンボルの出現確率よりも高くなるようにシンボルを選択することで、光信号の送信パワーを低減する。これにより、光送信機は、信号対雑音電力比を低減することができる。
【0003】
非特許文献1では、光送信機は、シンボルの出現確率をシンボル単位(シンボルレベル)で不均一にする。しかしながら、光通信システムで要求されるような高スループットの環境では、出現確率の不均一化をシンボル単位で実行する並列処理は困難である。そこで、出現確率の不均一化をビット単位(ビットレベル)で実行する整合回路が提案されている(非特許文献2及び3参照)。
【0004】
また、入力されたビット系列に1対1で対応するビット系列(符号語)を出力するエントロピー変換回路が提案されている(非特許文献4参照)。このエントロピー変換回路は、エントロピー変換回路に入力されたビット系列に含まれている1の個数であるハミング重みのビット系列を出力する。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】F.Buchali et al. , “Experimental demonstration of capacity increase and rate-adaptation by probabilistically shaped 64-QAM.” ECOC(2015)
【非特許文献2】Georg Bocherer et al. , “High Throughput Probabilistic Shaping with Product Distribution Matching”
【非特許文献3】Marcin Pikus et al. , “Bit-Level Probabilistically Shaped Coded Modulation”
【非特許文献4】T.V.Ramabadran,“A Coding Scheme for m-out-of-n Codes” IEEE Transactions on communications, Vol.38 No.8 (1990)
【発明の概要】
【発明が解決しようとする課題】
【0006】
図18は、従来における、光送信機の変調部の構成の例を示す図である。従来の変調部は、シリアル・パラレル変換部と、第1変換部(第1のエントロピー変換回路)と、第2変換部(第2のエントロピー変換回路)と、バイナリ・グレイ変換部と、ビット・シンボル変換部とから構成される。
【0007】
シリアル・パラレル変換部は、例えば100ビットの系列長の0及び1のビット系列(ランダムビット系列)を取得する。図18は、64QAMの変調部の構成の例を示す。この場合、シリアル・パラレル変換部は、シリアル・パラレル変換部に入力されたビット系列における最上位のビット系列を、MSB(Most Significant Bit)のビット系列としてビット・シンボル変換部に出力する。シリアル・パラレル変換部は、入力されたビット系列における上位2番目のビット系列を、SSB(Second Significant Bit)のビット系列として、第1変換部に出力する。シリアル・パラレル変換部は、入力されたビット系列における最下位のビット系列を、LSB(Least Significant Bit)のビット系列として第2変換部に出力する。64QAMと比較して多値度が高い256QAMでは、シリアル・パラレル変換部は、SSBとLSBとの間にTSB(Third Significant Bit)を出力する。また2(2×M)(Mは2以上の整数)QAMの場合では、シリアル・パラレル変換部は、シリアル・パラレル変換部に入力されたランダムビット系列を、第1ビット系列から第Mビット系列までのM個のビット系列として出力する。以下では、64QAM(M=3の場合)の例で説明を行う。
【0008】
シリアル・パラレル変換部が出力する各ビット系列の系列長は、予め定められる。すなわち、シリアル・パラレル変換部の出力における、MSBのビット系列の系列長と、SSBのビット系列の系列長と、LSBのビット系列の系列長とは、それぞれ予め定められる。ここで、MSBのビット系列の系列長は、SSBのビット系列の系列長以上、かつ、LSBのビット系列の系列長以上である。
【0009】
第1変換部は、第1変換部に入力されたSSBのビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるSSBのビット系列に変換するエントロピー変換回路である。第1変換部から出力されるエントロピー変換後のSSBのビット系列は、第1変換部に入力されたSSBのビット系列の系列長以上となる。エントロピー変換後のSSBのビット系列における0の出現確率又は1の出現確率は、任意の出現確率に予め定められる。第1変換部は、第1変換部に入力されたSSBのビット系列に1対1で対応するエントロピー変換後のSSBのビット系列を、バイナリ・グレイ変換部に出力する。
【0010】
図18では、第1変換部に入力されたビット系列における0の出現確率Pin1(0)は、一例として0.5である。第1変換部に入力されたビット系列における1の出現確率Pin1(1)は、一例として0.5である。エントロピーHは、「Σ−P・log(P)」と表される。したがって、入力エントロピーHinは1である。
【0011】
第1変換部から出力されたエントロピー変換後のSSBのビット系列における0の出現確率Pout1(0)は、一例として0.7である。第1変換部から出力されたエントロピー変換後のSSBのビット系列における1の出現確率Pout1(1)は、一例として0.3である。したがって、出力エントロピーHoutは、0.88である。
【0012】
第2変換部は、第2変換部に入力されたLSBのビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるLSBのビット系列に変換するエントロピー変換回路である。第2変換部から出力されるエントロピー変換後のLSBのビット系列は、第2変換部に入力されたLSBのビット系列の系列長以上となる。。エントロピー変換後のLSBのビット系列における0の出現確率又は1の出現確率は、任意の出現確率に予め定められる。第2変換部は、第2変換部に入力されたLSBのビット系列に1対1で対応するエントロピー変換後のLSBのビット系列を、バイナリ・グレイ変換部に出力する。
【0013】
バイナリ・グレイ変換部は、第1変換部から出力されたSSBのビット系列と第2変換部から出力されたLSBのビット系列とを、SSBのビット系列がLSBのビット系列よりも上位のビット系列となるように結合する。バイナリ・グレイ変換部は、このように結合されたバイナリコードを、グレイコードに変換する。
【0014】
バイナリ・グレイ変換部は、グレイコードに変換された結果を、グレイコード変換後のSSB及びLSBのビット系列としてビット・シンボル変換部に出力する。ここで、シリアル・パラレル変換部が出力したMSBのビット系列の系列長と、バイナリ・グレイ変換部が出力したSSBのビット系列の系列長と、バイナリ・グレイ変換部が出力したLSBのビット系列の系列長とは、互いに等しい。例えば64(=8)QAMでは、シンボルのグレイコードの系列長は、6(=2×log8)ビットである。
【0015】
より一般的な構成では(他の多値度)、M−1個のエントロピー変換回路の出力がバイナリ・グレイ変換部に入力され、バイナリ・グレイ変換部は、M−1ビット単位でバイナリコードをグレイコードに変換する。
【0016】
図19は、図18に示された従来における、シンボルのグレイコードとシンボルの出現確率との関係の例を示す図である。NQAMでは、シンボルを表す(2×logN)の系列長のビットを、I軸に対応する(logN)ビットとQ軸に対応する(logN)ビットとに分割し、I軸及びQ軸のうちの少なくとも一方でシンボルの出現確率を制御すれば、IQ平面の象限におけるシンボルの出現確率を、原点からの距離(振幅)に応じて制御可能である。IQ平面におけるシンボルの出現確率の分布が振幅値の正負に対して対称である場合、64(=8)QAMでは、I軸とQ軸とで各3(=log8)ビットにおけるSSB及びLSBが考慮されていれば、MSBは考慮されなくてもよい。
【0017】
従来の光通信システムでは、シンボルaの出現確率Psym(a)とシンボルbの出現確率Psym(b)との比は、シンボルcの出現確率Psym(c)とシンボルdの出現確率Psym(d)との比に等しい。このように従来の光通信システムでは、各シンボルの出現確率Psymの比に関してこのような制約が存在するので、各シンボルの出現確率Psymを独立に定めることができない。すなわち、従来の光通信システムは、SSB及びLSBにおける0の出現確率又は1の出現確率を独立に操作するだけでは、IQ平面におけるシンボルの出現確率の分布を任意に調整することができない。これはより多値度が高い場合でも同様である。2(2×M)QAMの場合は、2(M−1)個のシンボル点の出現確率を設定する際に制約が生じる。
【0018】
上記の制約のため従来の構成では任意の分布を設定することができない。例えば、加算性白色ガウス雑音(AWGN: Additive White Gaussian Noise)の環境において理論限界の通信容量が達成されるためには、シンボルの出現確率の分布が「マクスウェル−ボルツマン分布」に従っている必要があることが知られている。シンボルの出現確率の分布が「マクスウェル−ボルツマン分布」に従っていない光通信システムでは、伝送損失が発生する。このように、従来の光通信システムは、簡易な構成でシンボルの出現確率を任意に調整することができないことがあった。
【0019】
上記事情に鑑み、本発明は、簡易な構成でシンボルの出現確率を任意に調整することが可能である光通信システム、光送信機及び光受信機を提供することを目的としている。
【課題を解決するための手段】
【0020】
本発明の一態様は、光送信機と光受信機とを備える光通信システムであって、前記光送信機は、シリアル・パラレル変換部と、出現確率が互いに異なるシンボルの候補数の対数値に応じた個数の変換部及び選択部と、乗算部と、送信部とを有し、前記シリアル・パラレル変換部は、前記対数値により定まる本数の系列群のビット系列と、最上位系列群のビット系列とを出力し、前記変換部は、自変換部に入力された前記系列群のビット系列を、0の出現確率又は1の出現確率が所定の確率であるビット系列に変換し、前記選択部は、自選択部よりも上位の前記変換部によって前記出現確率が変換されたビット系列を取得し、取得されたビット系列に応じて、自選択部よりも上位の前記系列群の他選択部への前記シンボルの出力順を選択し、前記乗算部は、最上位系列群のビット系列に応じて、最上位の前記選択部によって選択された前記シンボルを表す値に数を乗算し、前記送信部は、前記数の乗算結果に基づく光信号を送信し、前記光受信機は、受信部と、復調部とを有し、前記受信部は、前記光信号を受信し、前記復調部は、受信された前記光信号に応じて生成された電気信号に対して復調処理を実行する、光通信システムである。
【0021】
本発明の一態様は、上記の光通信システムであって、前記光送信機は、前記変換部と前記選択部と前記乗算部とを有する2個の変調部と、虚数変換部と、多重部とを備え、前記虚数変換部は、第1の前記変調部から出力された実数の前記シンボルの列を、虚数の前記シンボルの列に変換し、前記多重部は、第2の前記変調部から出力された実数の前記シンボルの列と、虚数の前記シンボルの列とを多重する。
【0022】
本発明の一態様は、シリアル・パラレル変換部と、出現確率が互いに異なるシンボルの候補数の対数値に応じた個数の変換部及び選択部と、乗算部と、送信部とを備える光送信機であって、前記シリアル・パラレル変換部は、前記対数値により定まる本数の系列群のビット系列と、最上位系列群のビット系列とを出力し、前記変換部は、自変換部に入力された前記系列群のビット系列を、0の出現確率又は1の出現確率が所定の確率であるビット系列に変換し、前記選択部は、自選択部よりも上位の前記変換部によって前記出現確率が変換されたビット系列を取得し、取得されたビット系列に応じて、自選択部よりも上位の前記系列群の他選択部への前記シンボルの出力順を選択し、前記乗算部は、最上位系列群のビット系列に応じて、最上位の前記選択部によって選択された前記シンボルを表す値に数を乗算し、前記送信部は、前記数の乗算結果に基づく光信号を送信する、光送信機である。
【0023】
本発明の一態様は、上記の光送信機であって、前記変換部と前記選択部と前記乗算部とを有する2個の変調部と、虚数変換部と、多重部とを備え、前記虚数変換部は、第1の前記変調部から出力された実数の前記シンボルの列を、虚数の前記シンボルの列に変換し、前記多重部は、第2の前記変調部から出力された実数の前記シンボルの列と、虚数の前記シンボルの列とを多重する。
【0024】
本発明の一態様は、上記の光送信機であって、前記選択部は、2次元の複素平面における振幅方向に配置された複数のシンボルの候補から、送信される光信号のシンボルを選択する。
【0025】
本発明の一態様は、上記の光送信機であって、前記乗算部は、送信される光信号のシンボルを表す値に実数を乗算する。
【0026】
本発明の一態様は、上記の光送信機から送信された光信号を受信する受信部と、前記光信号に応じて生成された電気信号に対して復調処理を実行する復調部とを備える光受信機である。
【発明の効果】
【0027】
本発明により、簡易な構成でシンボルの出現確率を任意に調整することが可能である。
【図面の簡単な説明】
【0028】
【図1】第1実施形態における、光通信システムの構成の例を示す図である。
【図2】第1実施形態における、64QAMの変調部の構成の例を示す図である。
【図3】第1実施形態における、256QAMの変調部の構成の例を示す図である。
【図4】第1実施形態における、64QAMの復調部の構成の例を示す図である。
【図5】第1実施形態における、256QAMの復調部の構成の例を示す図である。
【図6】第1実施形態における、下位ビット選択部の構成の例を示す図である
【図7】第1実施形態における、シンボルのコードとシンボルの出現確率との関係の例を示す図である。
【図8】第1実施形態における、変調部の等価構成の例を示す図である。
【図9】第1実施形態における、振幅とシンボルの出現密度との関係の例を示す図である。
【図10】第1実施形態における、信号対雑音電力比と相互情報量との関係の例を示す図である。
【図11】第2実施形態における、正方QAMのシンボル・マッピング部の構成の例を示す図である。
【図12】第2実施形態における、正方QAMのシンボル・デマッピング部の構成の例を示す図である。
【図13】第2実施形態における、一般化されたシンボル・マッピング部の構成の例を示す図である。
【図14】第2実施形態における、一般化されたシンボル・デマッピング部の構成の例を示す図である。
【図15】第2実施形態における、一般化された変調部の等価構成の例を示す図である。
【図16】第2実施形態における、任意に選択されるシンボル群と乗算後のシンボル群との例を示す図である。
【図17】第2実施形態における、振幅方向に選択されるシンボル群と乗算後のシンボル群との例を示す図である。
【図18】従来における、光送信機の変調部の構成の例を示す図である。
【図19】従来における、シンボルのグレイコードとシンボルの出現確率との関係の例を示す図である。
【発明を実施するための形態】
【0029】
本発明の実施形態について、図面を参照して詳細に説明する。
【0030】
(第1実施形態)
図1は、光通信システム1の構成の例を示す図である。光通信システム1は、光送信機2と、光受信機3とを備える。光送信機2は、光信号を送信する機器である。光送信機2は、シンボル・マッピング部4aと、送信部5とを備える。シンボル・マッピング部4aは、変調部4を備える。変調部4は、変調部4に入力されたビット系列に対して変調処理を実行することによって、送信される光信号のシンボルを選択する。送信部5は、選択されたシンボルを表す電気信号に応じて光信号を生成する。送信部5は、生成された光信号を、光ファイバ等の伝送路を介して光受信機3に送信する。
【0031】
光受信機3は、光信号を受信する機器である。光受信機3は、受信部6と、シンボル・デマッピング部7aとを備える。受信部6は、光信号を送信部5から受信する。受信部6は、受信された光信号に応じて、シンボルを表す電気信号を生成する。シンボル・デマッピング部7aは、復調部7を備える。復調部7は、受信部6によって生成された電気信号に対して復調処理を実行する。復調部7は、復調処理が実行されたビット系列を、予め定められた外部装置に出力する。
【0032】
次に、変調部4及び復調部7の構成例の詳細を説明する。
図2は、64QAMの変調部4の構成の例を示す図である。64QAMの変調部4は、シリアル・パラレル変換部40と、候補選択部41と、乗算部42と、信号線500とを備える。候補選択部41は、変換部410と、変換部411と、変換部412とを備える。乗算部42は、ビット・シンボル変換部43を備える。信号線500は、変換部410から下位ビット選択部413に、変換部410によるエントロピー変換後のSSBのビット系列を出力する。
【0033】
図3は、256QAMの変調部4の構成の例を示す図である。256QAMの変調部4は、シリアル・パラレル変換部40と、候補選択部41と、乗算部42と、信号線500から信号線503までとを備える。シリアル・パラレル変換部40は、SSBとLSBとの間に、TSBの第1ビット系列及び第2ビット系列を出力する。
【0034】
信号線500は、TSBの第1ビット系列及び第2ビット系列が入力される下位ビット選択部に、エントロピー変換後のSSBのビット系列を出力する。信号線501は、LSBの第1ビット系列及び第2ビット系列が入力される下位ビット選択部に、エントロピー変換後のTSBの第1ビット系列を出力する。信号線502は、LSBの第3ビット系列及び第4ビット系列が入力される下位ビット選択部に、エントロピー変換後のTSBの第2ビット系列を出力する。信号線503は、LSBの下位ビット選択部に、変換部410から出力されたSSBのビット系列を出力する。
【0035】
変調部4において、このように変換部とビット選択部とを追加していくことで、2(2×M)QAMの変調部4を表すことができる。
【0036】
図4は、64QAMの復調部7の構成の例を示す図である。復調部7は、除算部70と、生成部71と、パラレル・シリアル変換部72とを備える。除算部70は、シンボル・ビット変換部73を備える。生成部71は、変換部710と、変換部711と、変換部712と、下位ビット選択部713と、信号線800とを備える。
【0037】
シンボル・ビット変換部73は、受信された光信号のシンボルを表す値を、ビット系列に変換する。シンボル・ビット変換部73は、ビット系列に変換されたSSBのビット系列を、信号線800を介して下位ビット選択部713に出力する。ここで、シンボル・ビット変換部73は、変換部710によるエントロピー変換前のSSBのビット系列を、信号線800を介して下位ビット選択部713に出力する。
【0038】
変換部710は、SSBのビット系列に対してエントロピー変換を実行することで、エントロピー変換後のSSBのビット系列を生成する。変換部710に入力されたSSBのビット系列の系列長は、エントロピー変換後のSSBのビット系列の第2系列長以上である。変換部711と変換部712と下位ビット選択部713とは、SSBのビット系列に応じて、エントロピー変換後のLSBの第1ビット系列と、エントロピー変換後のLSBの第2ビット系列とを生成する。パラレル・シリアル変換部72は、MSBのビット系列と、エントロピー変換後のSSBのビット系列と、エントロピー変換後のLSBの第1ビット系列と、エントロピー変換後のLSBの第2ビット系列とに対して、パラレル・シリアル変換処理を実行する。
【0039】
図5は、256QAMの復調部7の構成の例を示す図である。信号線800は、TSBの第1ビット系列及び第2ビット系列を各変換部に出力する下位ビット選択部に、エントロピー変換前のSSBのビット系列を出力する。信号線801は、LSBの第1ビット系列及び第2ビット系列を出力する下位ビット選択部に、エントロピー変換前のTSBの第1ビット系列を出力する。信号線802は、LSBの第3ビット系列及び第4ビット系列を出力する下位ビット選択部に、エントロピー変換前のTSBの第2ビット系列を出力する。信号線803は、LSBの下位ビット選択部に、シンボル・ビット変換部73から出力されたSSBのビット系列を出力する。
【0040】
図3に示された変調部4と同様に、復調部7において変換部と下位ビット選択部とを追加していくことで、2(2×M)QAMの復調部7を表すことができる。
【0041】
このように、復調部7の復調処理は、変調部4の変調処理に対して逆の処理である。したがって、復調部7におけるビット系列の流れの向きと、変調部4におけるビット系列の流れの向きとは、原則として互いに逆である。
【0042】
例外として、変調部4の信号線500におけるビット系列の流れの向きと、復調部7における信号線800におけるビット系列の流れの向きとは、互いに同じである。すなわち、復調部7の信号線800におけるビット系列の流れの向きは、変換部710から下位ビット選択部713への向きである。変調部4の信号線500におけるビット系列の流れの向きは、変換部410から下位ビット選択部413への向きである。同様に、信号線801の向きは、信号線501の向きと同じである。信号線802の向きは、信号線502の向きと同じである。信号線803の向きは、信号線503の向きと同じである。
【0043】
復調部7及び変調部4の間でビット系列の流れが逆である点が明確になったので、以下では変調部4についてのみ説明する。
【0044】
図2に戻り、64QAMの変調部4の構成の詳細を説明する。シリアル・パラレル変換部40は、例えば100ビットの系列長のビット系列(ランダムビット系列)を取得する。シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列に対して、シリアル・パラレル変換を実行する。
【0045】
すなわち、シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列を、上位ビット系列から下位ビット系列の順に、MSBのビット系列と、SSBのビット系列と、LSBの第1ビット系列(下位の第1ビット系列)と、LSBの第2ビット系列(下位の第2ビット系列)とに分ける。シリアル・パラレル変換部40に入力されたビット系列の系列長は、MSBのビット系列の系列長と、SSBのビット系列の系列長と、LSBの第1ビット系列の系列長と、LSBの第2ビット系列の系列長との合計に等しい。
【0046】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第1系列長の最上位のビット系列を、MSBのビット系列としてビット・シンボル変換部43に出力する。
【0047】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第2系列長の上位2番目のビット系列を、SSBのビット系列として、変換部410に出力する。
【0048】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第3系列長の最下位のビット系列を、LSBの第1ビット系列として変換部411に出力する。シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第4系列長の最下位のビット系列を、LSBの第2ビット系列として変換部412に出力する。
【0049】
シリアル・パラレル変換部40が出力する各ビット系列の系列長は、予め定められる。すなわち、MSBのビット系列の系列長(第1系列長)と、SSBのビット系列の系列長(第2系列長)と、LSBの第1ビット系列の系列長(第3系列長)と、LSBの第2ビット系列の系列長(第4系列長)とは、それぞれ予め定められる。ここで、第1系列長は、第2系列長以上、第3系列長以上且つ第4系列長以上である。
【0050】
変換部410は、シリアル・パラレル変換部40から出力されたSSBのビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるSSBのビット系列に変換するエントロピー変換回路である。変換部410から出力されるエントロピー変換後のSSBのビット系列の系列長は、変換部410に入力されたSSBのビット系列の系列長以上となる。エントロピー変換後のSSBのビット系列における0の出現確率又は1の出現確率は、任意の出現確率に予め定められる。光信号によって送信される光信号のシンボルの出現確率の分布が、設定された分布に従うように、変換部410から出力されるSSBのビット系列における0の出現確率又は1の出現確率は予め定められる。AWGN環境では、例えばマクスウェル−ボルツマン分布が最適な分布である。64QAMでの各変換部の出力におけるビット(0,1)の出現確率とシンボル(a,b,c,d)の確率分布との関係は、図7を用いた説明において後述される。各変換部の出力におけるビット(0,1)の出現確率は、出現確率及び確率分布の関係を用いて、設定されたシンボルの確率分布から求めることができる。
【0051】
ビット・シンボル変換部43及び下位ビット選択部413に変換部410から出力されたSSBのビット系列における0の出現確率Pout1(0)は、一例として0.7である。ビット・シンボル変換部43及び下位ビット選択部413に変換部410から出力されたSSBのビット系列における1の出現確率Pout1(1)は、一例として0.3である。
【0052】
変換部410は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のSSBのビット系列を、ビット・シンボル変換部43にビットごとに出力する。変換部410は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のSSBのビット系列を、信号線500を介して下位ビット選択部413にビットごとに出力する。
【0053】
変換部411は、LSBの第1ビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるLSBの第1ビット系列(下位のビット系列)に変換するエントロピー変換回路である。変換部411から出力されるエントロピー変換後のLSBの第1ビット系列の系列長は、変換部411に入力されたLSBの第1ビット系列の系列長以上となる。エントロピー変換後のLSBの第1ビット系列における0の出現確率又は1の出現確率は、任意の出現確率に予め定められる。変換部411から出力されるLSBの第1ビット系列における0の出現確率又は1の出現確率は、光信号によって送信される光信号のシンボルの出現確率の分布が、設定された分布に従うように、任意の出現確率に予め定められる。変換部411は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のLSBの第1ビット系列を、下位ビット選択部413にビットごとに出力する。
【0054】
変換部412は、LSBの第2ビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるLSBの第2ビット系列(最下位のビット系列)に変換するエントロピー変換回路である。変換部412から出力されるエントロピー変換後のLSBの第2ビット系列の系列長は、変換部412に入力されたLSBの第2ビット系列の系列長以上となる。エントロピー変換後のLSBの第2ビット系列における0の出現確率又は1の出現確率は、任意の出現確率に予め定められる。変換部412から出力されるLSBの第2ビット系列における0の出現確率又は1の出現確率は、光信号によって送信される光信号のシンボルの出現確率の分布が、設定された分布に従うように、任意の出現確率に予め定められる。変換部412は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のLSBの第2ビット系列を、下位ビット選択部413にビットごとに出力する。
【0055】
下位ビット選択部413は、0の出現確率又は1の出現確率が調整されたSSBのビット系列を、信号線500を介して変換部410から取得する。下位ビット選択部413は、LSBの第1ビット系列を変換部411から取得する。下位ビット選択部413は、LSBの第2ビット系列を変換部412から取得する。
【0056】
図6は、下位ビット選択部413の構成の例を示す図である。下位ビット選択部413は、バッファ416と、バッファ417と、切替部418とを備える。バッファ416は、LSBの第1ビット系列を記憶する。バッファ417は、LSBの第2ビット系列を記憶する。バッファ416及びバッファ417は、キュー(queue)を有し、記憶されたビットをFIFO(First In,First Out)で出力する。
【0057】
下位ビット選択部413は、信号線500を介して、上位ビットを変換部410から取得する。下位ビット選択部413は、取得された上位ビットに応じて、バッファ416に記憶されているLSBの第1系列のビットとバッファ417に記憶されているLSBの第2系列のビットとのうちからビットを選択する。下位ビット選択部413は、選択されたビットを、LSBの出力としてビット・シンボル変換部43に出力する。
【0058】
例えば、下位ビット選択部413は、エントロピー変換後のSSBのビット系列において0であるビットを変換部410から取得した場合、バッファ416に記憶されているLSBの第1系列のビットを、LSBの出力としてビット・シンボル変換部43に出力する。
【0059】
例えば、下位ビット選択部413は、エントロピー変換後のSSBのビット系列において1であるビットを変換部410から取得した場合、バッファ417に記憶されているLSBの第2系列のビットを、LSBの出力としてビット・シンボル変換部43に出力する。
【0060】
ビット・シンボル変換部43は、ビット・シンボル変換部43に入力されたMSB、SSB、LSBビット系列を、In-phaseもしくはQquadrature-phaseにおけるシンボルに変換する。すなわち、ビット・シンボル変換部43は、IもしくはQ軸におけるシンボルのマッピングを実行する。ビット・シンボル変換部43は、ビット系列がシンボルに変換された結果を、送信される光信号のシンボルを表す値(コード)として送信部5に出力する。
【0061】
図7は、シンボルのコードとシンボルの出現確率との関係の例を示す図である。下位ビット選択部413は、エントロピー変換後のSSBのビット系列におけるビットに応じて、LSBの第1ビット系列のビットとLSBの第2ビット系列のビットとのうちのいずれを上位ビットにするかを選択する。
【0062】
図7に示されたコードは、SSBのビット系列とLSBのビット系列とを表す。コード「00」のシンボルの出現確率Psym(a)は、Pout1(0)×Pout2(0)である。Pout1(0)は、変換部410の出力であるエントロピー変換後のSSBのビット系列における「0」の出現確率である。Pout2(0)は、変換部411の出力であるエントロピー変換後のLSBの第1ビット系列における「0」の出現確率である。
【0063】
コード「01」のシンボルの出現確率Psym(b)は、Pout1(0)×Pout2(1)である。Pout2(1)は、変換部411の出力であるエントロピー変換後のLSBの第1ビット系列における「1」の出現確率である。
【0064】
コード「11」のシンボルの出現確率Psym(c)は、Pout1(1)×Pout3(1)である。Pout1(1)は、変換部410の出力であるエントロピー変換後のSSBのビット系列における「1」の出現確率である。Pout3(1)は、変換部412の出力であるエントロピー変換後のLSBの第2ビット系列における「1」の出現確率である。
【0065】
コード「10」のシンボルの出現確率Psym(d)は、Pout1(1)×Pout3(0)である。Pout3(0)は、変換部412の出力であるエントロピー変換後のLSBの第2ビット系列における「0」の出現確率である。
【0066】
図8は、図2に示された変調部4の等価構成の例を示す図である。変調部4は、シリアル・パラレル変換部40と、候補選択部41と、乗算部42とを備える。候補選択部41は、変換部410から出力されたビット系列と変換部411から出力されたビット系列と変換部412から出力されたビット系列とに応じて、予め定められたシンボルの候補に基づいてシンボル列を生成する。候補選択部41は、変換部410と、変換部411と、変換部412と、信号線500とを備える。候補選択部41は、記憶部600を備える。
【0067】
候補選択部41は、切替部414と、切替部415と、バッファ416と、バッファ417と、切替部418とを備える。バッファ416とバッファ417と切替部418とは、図2に示された下位ビット選択部413と等価の構成である。変換部410と変換部411と変換部412とは、図2に示された変換部と等価の構成である。
【0068】
予め定められたシンボルの候補の個数が(2)個である場合、候補選択部41は、(2−1)個の変換部と、(2−1)個の切替部とを備える。図8では、予め定められた送信される光信号のシンボルの候補は、SaとSbとScとSdとの4(=2)個である。このため、候補選択部41は、3(=2−1)個の変換部(変換部410、変換部411、変換部412)と、3個の選択部としての切替部414、切替部415及び切替部418とを備えている。記憶部600は、シンボルの候補(Sa、Sb、Sc、Sd)を予め記憶する。
【0069】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第1系列長の最上位のビット系列を、MSBのビット系列として乗算部42にビットごとに出力する。
【0070】
変換部410は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のSSBのビット系列を、信号線500を介して切替部418にビットごとに出力する。変換部411は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のLSBの第1ビット系列を、切替部414にビットごとに出力する。変換部412は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のLSBの第2ビット系列を、切替部415にビットごとに出力する。
【0071】
切替部414は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のLSBの第1ビット系列を、ビットごとに変換部411から取得する。切替部414は、エントロピー変換後のLSBの第1ビット系列におけるビットが0である場合、送信される光信号のシンボルの候補の一つであるシンボルSaを、バッファ416に出力する。切替部414は、エントロピー変換後のLSBの第1ビット系列におけるビットが1である場合、送信される光信号のシンボルの候補の一つであるシンボルSbを、バッファ416に出力する。
【0072】
切替部415は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のLSBの第2ビット系列を、ビットごとに変換部412から取得する。切替部415は、エントロピー変換後のLSBの第2ビット系列におけるビットが0である場合、送信される光信号のシンボルの候補の一つであるシンボルScを、バッファ417に出力する。切替部415は、エントロピー変換後のLSBの第2ビット系列におけるビットが1である場合、送信される光信号のシンボルの候補の一つであるシンボルSdを、バッファ417に出力する。
【0073】
バッファ416及びバッファ417は、RAM(Random Access Memory)等の揮発性の記録媒体である。バッファ416及びバッファ417は、フラッシュメモリ等の不揮発性の記憶装置(非一時的な記録媒体)でもよい。
【0074】
バッファ416は、切替部414から出力されたシンボルSa又はシンボルSbを一時記憶する。バッファ417は、切替部415から出力されたシンボルSc又はシンボルSdを一時記憶する。バッファ416及びバッファ417は、キュー(queue)を有し、FIFO(First In,First Out)でシンボル列を出力する。
【0075】
切替部418は、0の出現確率又は1の出現確率が調整されたエントロピー変換後のSSBのビット系列を、ビットごとに変換部410から取得する。切替部418は、エントロピー変換後のSSBのビット系列におけるビットが0である場合、バッファ416に記憶されているシンボルSa又はシンボルSbを、乗算部42に出力する。切替部418は、エントロピー変換後のSSBのビット系列におけるビットが1である場合、バッファ417に記憶されているシンボルSc又はシンボルSdを、乗算部42に出力する。
【0076】
乗算部42は、MSBのビット系列を、ビットごとにシリアル・パラレル変換部40から取得する。乗算部42は、シンボルの候補(シンボルSa、シンボルSb、シンボルSc、シンボルSd)のうちから選択された一つのシンボルを、エントロピー変換後のSSBのビット系列におけるビットごとに、切替部418から取得する。
【0077】
第1実施形態では、乗算部42は、MSBのビット系列におけるビットに応じて、取得されたシンボルのコード(シンボルを表す値)に実数を乗算する。例えば、乗算部42は、MSBのビット系列におけるビットが0である場合、取得されたシンボルのコードに(+1)を乗算する。例えば、乗算部42は、MSBのビット系列におけるビットが1である場合、取得されたシンボルのコードに(−1)を乗算する。乗算部42は、シンボルのコードに実数が乗算された結果を、送信部5に出力する。
【0078】
図9は、振幅とシンボルの出現密度との関係の例を示す図である。横軸は振幅のレベルを示す。縦軸は、シンボルの出現密度を示す。図9に示された「提案方式」は、変調部4が実行するシンボル割り当ての方式である。変調部4が実行する方式では、シンボルの出現確率が設定した分布(ここではマクスウェル−ボルツマン分布)に従っている。なお、各変換部における出現確率のパラメータは、提案方式の伝送容量と従来方式の伝送容量とが同じになるように調整されている。
【0079】
図10は、信号対雑音電力比と相互情報量との関係の例を示す図である。横軸は信号対雑音電力比を示す。縦軸は、規格化(正規化)された一般化相互情報量(以下「規格化一般化相互情報量」という。)を示す。規格化一般化相互情報量は、理想的なバイナリ軟判定誤り訂正符号を用いた際に実現可能な通信容量である。「提案方式」と「従来方式」とで同じ規格化一般化相互情報量を用いた比較結果が示すように、提案方式は、従来方式と比較して、要求される信号対雑音電力比が低い。
【0080】
以上のように、第1実施形態の光通信システム1は、光送信機2と、光受信機3とを備える。光送信機2は、シリアル・パラレル変換部40と、変換部410と、変換部411と、変換部412と、選択部(切替部、バッファ)と、乗算部42とを備える。光受信機3は、光信号を受信する受信部6と、受信された光信号に応じて生成された電気信号に対して復調処理を実行する復調部7とを備える。
【0081】
シリアル・パラレル変換部40は、0の出現確率又は1の出現確率が第1確率(例えば、0.5)であるビット系列を、MSBのビット系列(最上位のビット系列)と、SSBのビット系列(上位2番目のビット系列)と、LSBの第1ビット系列(下位のビット系列)と、LSBの第2ビット系列(最下位のビット系列)とに分ける。
【0082】
変換部410は、SSBのビット系列を、0の出現確率又は1の出現確率が任意の第2確率である上位2番目のビット系列に変換する。変換部411は、LSBの第1ビット系列(下位のビット系列)を、0の出現確率又は1の出現確率が任意の第3確率である下位のビット系列に変換する。変換部412は、LSBの第2ビット系列(最下位のビット系列)を、0の出現確率又は1の出現確率が任意の第4確率である最下位のビット系列に変換する。
【0083】
選択部(切替部、バッファ)は、変換されたLSBの第1ビット系列と変換されたLSBの第2ビット系列とに応じて、複数のシンボルの候補から第1のシンボルと第2のシンボルとを選択する。選択部は、変換されたSSBのビット系列に応じて、送信される光信号のシンボルを第1のシンボル又は第2のシンボルから選択する。選択部は、2次元の複素平面(IQ平面)における振幅方向に配置された複数のシンボルの候補から、送信される光信号のシンボルを選択する。乗算部42は、MSBのビット系列に応じて、送信される光信号のシンボルを表す値(コード)に実数(例えば、+1、−1)を乗算する。乗算部42は、送信される光信号のシンボルを表す値に実数を乗算する。送信部5は、実数の乗算結果に基づく光信号を送信する。受信部6は、光信号を受信する。復調部7は、受信された光信号に応じて生成された電気信号に対して復調処理を実行する。
【0084】
このように、光通信システム1は、簡易な構成でシンボルの出現確率を任意に調整することが可能である。光通信システム1は、光信号の送信パワーを抑えることが可能である。
【0085】
第1実施形態では、図8に示されているようにシンボルの位置がI軸上又はQ軸上に制限されるが、光通信システム1は、変調部4の回路規模を削減することができる。
【0086】
変調部4は、IQ平面にシンボルを割り当てる場合、多段に接続されたビットレベルの変換部(確率不均一化回路)と下位ビット選択部413とを、各シンボル点の出力の制御に用いる。これによって、変調部4は、IQ平面における各シンボルの分布を、任意の確率分布にすることができる。変調部4は、伝送容量の特性の劣化(伝送損失)を少なくして、シンボル割り当ての並列処理を実行することができる。変調部4は、光信号の送信パワーを抑えることができる。
【0087】
(第2実施形態)
第2実施形態では、候補選択部41から出力されたビット系列に乗算部42が任意の数(複素数)を乗算する点が、第1実施形態と相違する。第2実施形態では、第1実施形態との相違点を説明する。
【0088】
図11は、正方QAMのシンボル・マッピング部4bの構成の例を示す図である。光送信機2は、シンボル・マッピング部4bと、送信部5とを備える。正方QAMのシンボル・マッピング部4aは、シリアル・パラレル変換部40bと、変調部4−1と、変調部4−2と、虚数変換部44と、多重部45とを備える。正方QAMのシンボル・マッピング部4bは、変調部4−1及び4−2を並列に備える。
【0089】
シリアル・パラレル変換部40bは、ビット系列を取得し、変調部4−1へのビット系列と変調部4−2へのビット系列とが1対1の比率になるように、取得されたビット系列をパラレル化する。シリアル・パラレル変換部40bは、1対1の比率になるようにパラレル化されたビット系列を、変調部4−1及び4−2に出力する。
【0090】
変調部4−1は、シリアル・パラレル変換部40bから取得されたビット系列に対して変調処理を実行する。変調部4−1は、変調処理の結果である実数のシンボル列を、多重部45に出力する。
【0091】
変調部4−2は、シリアル・パラレル変換部40bから取得されたビット系列に対して変調処理を実行する。変調部4−2は、変調処理の結果である実数のシンボル列を、虚数変換部44に出力する。
【0092】
虚数変換部44は、変調部4−2から出力された実数のシンボル列を、虚数のシンボル列に変換する。
【0093】
多重部45は、実数のシンボル列と虚数のシンボル列とを多重することによって、複素数のシンボル列を生成する。多重部45は、生成された複素数のシンボル列を、送信部5に出力する。
【0094】
図12は、正方QAMのシンボル・デマッピング部7bの構成の例を示す図である。光受信機3は、受信部6と、シンボル・デマッピング部7bとを備える。正方QAMのシンボル・デマッピング部7bは、パラレル・シリアル変換部72bと、復調部7−1と、復調部7−2と、実部取出部74と、虚部取出部75とを備える。
【0095】
実部取出部74は、複素数のシンボル列を受信部6から取得する。実部取出部74は、複素数のシンボル列(c=a+jb)から、複素数の実部(Re(c)=a)を取り出す。実部取出部74は、実数のシンボル列(a)を復調部7−1に出力する。
【0096】
虚部取出部75は、複素数のシンボル列を受信部6から取得する。虚部取出部75は、複素数のシンボル列(c=a+jb)から、複素数の虚部(Im(c)=b)を取り出す。虚部取出部75は、実数のシンボル列(b)を復調部7−2に出力する。
【0097】
復調部7−1は、実数のシンボル列(a)に対して復調処理を実行する。復調部7−1は、実数のシンボル列(a)に対する復調処理の結果であるビット系列を、パラレル・シリアル変換部72bに出力する。復調部7−2は、実数のシンボル列(b)に対して復調処理を実行する。復調部7−2は、実数のシンボル列(b)に対する復調処理の結果であるビット系列を、パラレル・シリアル変換部72bに出力する。
【0098】
パラレル・シリアル変換部72bは、復調部7−1から取得されたビット系列と復調部7−2から取得されたビット系列とに対して、パラレル・シリアル変換を実行する。パラレル・シリアル変換部72bは、シリアル化されたビット系列を、予め定められた外部装に出力する。
【0099】
図13は、一般化されたシンボル・マッピング部4c(正方QAMに限られないシンボル・マッピング部4c)の構成の例を示す図である。光送信機2は、シンボル・マッピング部4cと、送信部5とを備える。シンボル・マッピング部4cは、シンボル・マッピング部4cに入力されたビット系列に対して変調処理を実行する。シンボル・マッピング部4cは、複素数のシンボル列を送信部5に出力する。
【0100】
図14は、一般化されたシンボル・デマッピング部7c(正方QAMに限られないシンボル・デマッピング部7c)の構成の例を示す図である。光受信機3は、受信部6と、シンボル・デマッピング部7cとを備える。シンボル・デマッピング部7cは、シンボル・デマッピング部7cに入力されたビット系列に対して復調処理を実行する。シンボル・デマッピング部7cは、復調処理が実行されたビット系列を、予め定められた外部装置に出力する。
【0101】
図15は、一般化された変調部4(正方QAMに限られない変調部4)の等価構成の例を示す図である。変調部4は、シリアル・パラレル変換部40と、候補選択部41と、乗算部42とを備える。候補選択部41は、変換部を多段に備える。図15では、候補選択部41は、変換部410と、変換部411と、変換部412と、変換部419と、変換部420と、バッファ423と、バッファ424と、信号線500等の複数の信号線とを備える。
【0102】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列を、上位ビット系列から下位ビット系列までの順に、最上位系列群と第1系列群から第(log(k))系列群までとの各ビット系列に分ける。ここで、kは、2(log2N−1)=N/2で表される整数である。例えば、16QAMであればk=2である。64QAMであればk=4である。シリアル・パラレル変換部40に入力されたビット系列の系列長は、最上位系列群のビット系列の系列長と第1系列群から第(log(k))系列群までの各ビット系列の系列長との合計に等しい。
【0103】
第1系列群から第(log(k))系列群までの変換部の個数は、(2(log(k))−1)個である。
【0104】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第1系列長の最上位のビット系列を、最上位系列群のビット系列として乗算部42に出力する。
【0105】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第2系列長の上位2番目のビット系列を、第1系列群のビット系列として、変換部410に出力する。
【0106】
シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第3系列長の上位3番目のビット系列を、第2系列群の第1ビット系列として変換部411に出力する。シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列における第4系列長の上位4番目のビット系列を、第2系列群の第2ビット系列として変換部412に出力する。
【0107】
このように、シリアル・パラレル変換部40は、シリアル・パラレル変換部40に入力されたビット系列を、最上位系列群と第1系列群から第(log(k))系列群までとの各ビット系列に分ける。
【0108】
変換部419は、変換部419に入力されたビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるビット系列に変換するエントロピー変換回路である。変換部419は、変換部419に入力された第(log(k))系列群の第1ビット系列について、0の出現確率又は1の出現確率を変更するというエントロピー変換を実行する。変換部419は、エントロピー変換後の第(log(k))系列群の第1ビット系列を、切替部421に出力する。
【0109】
変換部420は、変換部420に入力されたビット系列を、0の出現確率又は1の出現確率が所定の出現確率であるビット系列に変換するエントロピー変換回路である。変換部420は、変換部420に入力された第(log(k))系列群の第(k/2)ビットについて、0の出現確率又は1の出現確率を変更するというエントロピー変換を実行する。変換部419は、エントロピー変換後の第(log(k))系列群の第(k/2)ビット系列を、切替部421に出力する。
【0110】
切替部421は、0の出現確率又は1の出現確率が調整されたエントロピー変換後の第(log(k))系列群の第1ビット系列を、ビットごとに変換部419から取得する。切替部421は、エントロピー変換後の第(log(k))系列群の第1ビット系列におけるビットが0である場合、送信される光信号のシンボルの候補の一つであるシンボルSを、バッファ423に出力する。切替部421は、エントロピー変換後の第(log(k))系列群の第1ビット系列におけるビットが1である場合、送信される光信号のシンボルの候補の一つであるシンボルSを、バッファ423に出力する。バッファ423は、キューを有し、FIFOでシンボル列を出力する。
【0111】
切替部422は、0の出現確率又は1の出現確率が調整されたエントロピー変換後の第(log(k))系列群の第(k/2)ビット系列を、ビットごとに変換部420から取得する。切替部422は、エントロピー変換後の第(log(k))系列群の第(k/2)ビット系列におけるビットが0である場合、送信される光信号のシンボルの候補の一つであるシンボルSk−1を、バッファ424に出力する。切替部421は、エントロピー変換後の第(log(k))系列群の第(k/2)ビット系列におけるビットが1である場合、送信される光信号のシンボルの候補の一つであるシンボルSを、バッファ424に出力する。バッファ424は、キューを有し、FIFOでシンボル列を出力する。
【0112】
候補選択部41は、切替部414と、切替部415と、バッファ416と、バッファ417と、切替部418と、切替部421と、切替部422と、バッファ423と、バッファ424とを備える。切替部414と切替部415とバッファ416とバッファ417と切替部418とは、図2に示された下位ビット選択部413と等価の構成である。第1系列群から第(log(k))系列群までの切替部の個数は、変換部の個数と同じであり、(2(log(k))−1)個である。
【0113】
図15では、送信される光信号のシンボルの候補は、SからSkまでのk個である。予め定められたシンボルの候補の個数がk(=2)個である場合、候補選択部41は、(2−1)個の変換部と、(2−1)個の切替部とを備える。図15に示された各変換部と各切替部と各バッファとは、図8に示された各変換部と各切替部と各バッファと同様に動作する。
【0114】
乗算部42は、最上位系列群のビット系列を、ビットごとにシリアル・パラレル変換部40から取得する。乗算部42は、シンボルの候補(SからSkまで)のうちから選択された一つのシンボルを、エントロピー変換後の第1系列のビット系列におけるビットごとに、切替部418から取得する。
【0115】
第2実施形態では、乗算部42は、最上位系列群のビット系列におけるビット系列に応じて、取得されたシンボルコードに任意の数(複素数)を乗算する。例えば、乗算部42は、最上位系列群のビット系列におけるビット系列が「00」である場合、取得されたシンボルのコードに複素数(1+i)を乗算する。例えば、乗算部42は、最上位系列群のビット系列におけるビット系列が「01」である場合、取得されたシンボルのコードに複素数(−1+i)を乗算する。例えば、乗算部42は、最上位系列群のビット系列におけるビット系列が「11」である場合、取得されたシンボルのコードに複素数(−1−i)を乗算する。例えば、乗算部42は、最上位系列群のビット系列におけるビット系列が「10」である場合、取得されたシンボルのコードに複素数(1−i)を乗算する。乗算部42は、シンボルのコードに任意の数が乗算された結果を、送信部5に出力する。
【0116】
なお、変調部4は、例えば、変調部4に備えられる変換部及び切替部の個数が「2のべき乗」でない個数に調整されることで、予め定められたシンボルの候補の個数が「2のべき乗」でない場合にも対応可能である。また、変調部4は、変調部4に備えられている複数の変換部及び切替部のうちの一部の変換部及び切替部を使用することで、予め定められたシンボルの候補の個数が「2のべき乗」でない場合に対応可能である。
【0117】
図16は、任意に選択されるシンボル群と乗算後のシンボル群との例を示す図である。変調部4は、IQ平面における任意の複数のシンボルの候補から、シンボルを選択してもよい。乗算部42は、候補選択部41の出力に、任意の数(複素数)を乗算してもよい。図16では、2次元の複素平面(IQ平面)におけるコンスタレーションの形状(信号空間ダイヤグラム)は、64QAM等のコンスタレーションのような格子状(正方)に制限されない。
【0118】
図17は、振幅方向に選択されるシンボル群と乗算後のシンボル群との例を示す図である。変調部4は、IQ平面における振幅方向(実数)の複数のシンボルから、シンボルを選択してもよい。乗算部42は、候補選択部41の出力に、任意の数(複素数)を乗算してもよい。図17では、2次元の複素平面(IQ平面)におけるコンスタレーションの形状(信号空間ダイヤグラム)は放射状となる。
【0119】
以上のように、第2実施形態の光通信システム1は、光送信機2と、光受信機3とを備える。光送信機2は、シリアル・パラレル変換部40と、出現確率が互いに異なるシンボルの候補数(k)の対数値に応じた個数((2(log(k))−1)個)の変換部と、同じ個数の選択部(切替部)と、乗算部42と、送信部5とを有する。
【0120】
シリアル・パラレル変換部40は、候補数(k)の対数値により定まる本数(log(k)本)の系列群のビット系列と、最上位系列群のビット系列とを出力する。変換部は、自変換部に入力された系列群のビット系列を、0の出現確率又は1の出現確率が所定の確率であるビット系列に変換する。選択部は、自選択部よりも上位の変換部によって出現確率が変換されたビット系列を取得する。選択部は、取得されたビット系列に応じて、自選択部よりも上位の系列群の他選択部へのシンボルの出力順を選択する。乗算部42は、最上位系列群のビット系列に応じて、最上位の選択部である切替部418によって選択されたシンボルを表す値に数を乗算する。送信部5は、複素数の乗算結果に基づく光信号を送信する。光受信機3は、受信部6と、復調部7とを有する。受信部6は、光信号を受信する。復調部7は、受信された光信号に応じて生成された電気信号に対して復調処理を実行する。
【0121】
このように、光通信システム1は、簡易な構成でシンボルの出現確率を任意に調整することが可能である。光通信システム1は、光信号の送信パワーを抑えることが可能である。
【0122】
光送信機2は、変換部と選択部(切替部)と乗算部42とを有する2個の変調部4と、虚数変換部44と、多重部45とを備えてもよい。虚数変換部44は、変調部4−2から出力された実数のシンボルの列を、虚数のシンボルの列に変換する。多重部45は、変調部4−1から出力された実数のシンボルの列と、虚数変換部44から出力された虚数のシンボルの列とを多重する。
【0123】
以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
【0124】
例えば、光送信機2及び光受信機3は、フラッシュメモリ等の不揮発性の記憶装置(非一時的な記録媒体)に、プログラム、コードテーブルを記憶してもよい。光送信機2及び光受信機3の機能の少なくとも一部は、ソフトウェアによって実現されてもよい。
乗算部42は、乗算処理用のデータテーブルを記憶してもよい。データテーブルは、例えば、乗算前の複素数と乗算後の複素数との対応付けを表すテーブルでもよい。
【符号の説明】
【0125】
1…光通信システム、2…光送信機、3…光受信機、4…変調部、4a…シンボル・マッピング部、5…送信部、5a…シンボル・デマッピング部、6…受信部、7…復調部、40…シリアル・パラレル変換部、40b…シリアル・パラレル変換部、41…候補選択部、42…乗算部、43…ビット・シンボル変換部、44…虚数変換部、45…多重部、70…除算部、71…生成部、72…パラレル・シリアル変換部、72a…パラレル・シリアル変換部、73…シンボル・ビット変換部、74…実部取出部、75…虚部取出部、410…変換部、411…変換部、412…変換部、413…下位ビット選択部、414…切替部、415…切替部、416…バッファ、417…バッファ、418…切替部、500…信号線、501…信号線、502…信号線、503…信号線、600…記憶部、710…変換部、711…変換部、712…変換部、713…下位ビット選択部、800…信号線、801…信号線、802…信号線、803…信号線
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
【図8】
【図9】
【図10】
【図11】
【図12】
【図13】
【図14】
【図15】
【図16】
【図17】
【図18】
【図19】