(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO2014049717
(43)【国際公開日】20140403
【発行日】20160822
(54)【発明の名称】機能性連続急速冷凍装置
(51)【国際特許分類】
   F25D 13/00 20060101AFI20160725BHJP
   F25D 17/06 20060101ALI20160725BHJP
   A23L 3/36 20060101ALI20160725BHJP
【FI】
   !F25D13/00 A
   !F25D17/06 312
   !A23L3/36 Z
【審査請求】有
【予備審査請求】未請求
【全頁数】21
【出願番号】2014537896
(21)【国際出願番号】JP2012074700
(22)【国際出願日】20120926
(11)【特許番号】5878983
(45)【特許公報発行日】20160308
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】514174051
【氏名又は名称】ジャパン サイエンス アンド テクノロジー トレーディング カンパニー リミテッド
【氏名又は名称原語表記】Japan Science & Technology Trading Co.,Limited
【住所又は居所】中華人民共和国 香港特別自治区 カオルーン、サン ポー コング、34ハオ タイヤウストリート、ニューテックプラザ、ユニット12、16エフ
【住所又は居所原語表記】Unit 12,16/F,New Tech Plaza ,No.34 Tai Yau Street,San Po Kong, Kowloon,Hong Kong China
(74)【代理人】
【識別番号】100080746
【弁理士】
【氏名又は名称】中谷 武嗣
(72)【発明者】
【氏名】秦 忠世
【住所又は居所】大阪府大阪市阿倍野区松崎町3−7−4
(72)【発明者】
【氏名】前田 慎介
【住所又は居所】神奈川県横浜市都筑区茅ヶ崎中央9−14−801
(72)【発明者】
【氏名】丸岡 俊之
【住所又は居所】大阪府豊中市蛍池中町2−1−2
【テーマコード(参考)】
3L045
3L345
4B022
【Fターム(参考)】
3L045AA01
3L045AA02
3L045BA03
3L045CA03
3L045CA05
3L045EA01
3L045LA08
3L045NA03
3L045PA04
3L345AA06
3L345AA16
3L345AA18
3L345BB02
3L345CC01
3L345DD24
3L345DD33
3L345EE04
3L345EE48
3L345FF13
3L345FF42
3L345KK04
4B022LF02
4B022LN01
4B022LP01
4B022LT06
(57)【要約】
被冷凍物の表面全体に万偏なく冷気流を接触させて、最大氷結晶生成帯を容易に早く通過し、被冷凍物の中心部が短時間で所定の温度に到達可能な機能性連続急速冷凍装置を提供するために、被冷凍物Qが収容される冷凍室2と、該冷凍室2の中央部に仕切り壁状に配設され冷凍室2を第1冷凍区画2aと第2冷凍区画2bに区画する冷却用熱交換器1と、第1冷凍区画2aを介して冷却用熱交換器1と対面状に配設される第1送風ファン5と、第2冷凍区画2bを介して冷却用熱交換器1と対面状に配設される第2送風ファン6と、を備える。
【特許請求の範囲】
【請求項1】
被冷凍物(Q)が収容される冷凍室(2)と、該冷凍室(2)の中央部に仕切り壁状に配設され上記冷凍室(2)を第1冷凍区画(2a)と第2冷凍区画(2b)に区画する冷却用熱交換器(1)と、上記第1冷凍区画(2a)を介して上記冷却用熱交換器(1)と対面状に配設される第1送風ファン(5)と、上記第2冷凍区画(2b)を介して上記冷却用熱交換器(1)と対面状に配設される第2送風ファン(6)と、を備えたことを特徴とする機能性連続急速冷凍装置。
【請求項2】
上記冷却用熱交換器(1)によって発生する上記冷凍室(2)内の冷気を、上記第1冷凍区画(2a)から上記第2冷凍区画(2b)への流れと、上記第2冷凍区画(2b)から上記第1冷凍区画(2a)への流れとに、所定時間毎に切り換わるように、上記第1送風ファン(5)と上記第2送風ファン(6)のファン回転方向を制御するファン制御部(8)を具備する請求項1記載の機能性連続急速冷凍装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多種多様な食品・食材等の被冷凍物を高品質かつ低コストで長時間連続的に冷凍し得る機能性連続急速冷凍装置に関する。
【背景技術】
【0002】
食品保存法は、古来より伝承的な塩蔵や乾燥を始めとして時代の変遷と共に、缶詰、レトルト食品、真空パック、低温保存、冷凍法など技術の進歩の過程で様々な工夫がされて来た。
その多くは、微生物による腐敗を如何に防ぐか、また、化学反応による変敗を如何に防止するかが決め手となっていた。なかでも、現在主流の冷凍法(冷凍装置)は、生鮮食材の本来の状態(色調、味、香り、食感等)に、また、加工食品の製造直後の状態のまま長期保存を目標に発展し、一般家庭は元より外食産業など、我々の食生活に深く浸透している。
その先端に、急速冷凍技術が存在する。単なる緩慢冷凍と異なり、例えば、−35℃〜−55℃程度の超低温の冷気を吹き付けて被冷凍物(食品・食材)を凍結するエアブラスト方式や、液冷媒と接触せしめるブライン方式、及び、両者の複合方式(例えば、特許文献1参照)がある。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2011−78333号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特に、従来のエアブラスト方式は、被冷凍物の表面全体に行き渡って接触することは適わず、先ずは一部の冷気接触面から冷却が進み内部へと漸次熱伝導していく(冷却が進む)為、薄い被冷凍物はともかく、肉厚のものは、急速冷凍とは言えど、完全冷凍に到るには或る程度の時間を要する。それ故、最大氷結晶生成帯(−1℃〜−5℃位)で、被冷凍物の組織細胞の水分が氷(結)晶となって成長し、組織細胞を破壊、それが、解凍時にドリップとなり流出、品質劣化を招来する。
特に、被冷凍物が少量多品種の場合、各々の形状が異なるため、凍結ムラが多いといった問題があった。
また、冷凍室内の水蒸気や被冷凍物の水分が、冷却用熱交換器に集中して霜となって付着する為、冷凍能力の低下やコンプレッサーが過負荷となって故障の原因となる問題があった。
また、冷却用熱交換器の霜の除去(デフロスト)を、所定時間毎(8時間程度毎)に行なう必要があり、連続運転(24時間運転)が出来ないといった問題や、凍結ムラを無くすために、凍結時間を長めに設定する傾向があり、効率が悪く、生産コスト高になるといった問題があった。
【0005】
例えば、図8に示すような従来のエアブラスト方式の冷凍装置は、食材や食品等の被冷凍物Qが収容される冷凍室92と、冷凍室92の内側壁側に配設され冷気を発生させるための冷却用熱交換器91と、冷気を被冷凍物Qに吹き付けるための送風ファン95と、を備えていた。
そして、冷気は、送風ファン95によって、被冷凍物Qに向かって常に同一方向へ流れ、冷凍室92内で、自然対流に近いかたちで循環する。被冷凍物Qは冷気が直接に接触する一方面から冷却され、反対面は冷却が不十分となり、伝導により中心部が所定の温度に達するのにはかなりの時間を要する。
また、被冷凍物の配置や、その形状や大きさなどが異なる場合には、冷気の流れが遮られたり乱れて、冷気が全く接しない被冷凍物が出てくるケースも多々あることは言うまでもない。
これらの事実が、上述の冷凍ムラや品質劣化の問題が生じる最大の要因となっている。即ち、急速冷凍装置が、残念ながら亜急速冷凍装置となっている。
従って、多様化する様々な被冷凍物の品質保持の為には、最大氷結晶生成帯の速やか通過は言う迄もなく、その後の被冷凍物の中心部まで素早い冷凍を図り、物理的ダメージを最小限に抑えると共に、冷凍ムラが無く、ローコストで所定の温度に凍結することが肝要である。
【0006】
そこで、本発明は、被冷凍物の表面全体に万偏なく冷気流を接触させて、最大氷結晶生成帯を容易に早く通過し、被冷凍物の中心部が短時間で所定の温度に到達可能な機能性連続急速冷凍装置の提供を目的とする。
【課題を解決するための手段】
【0007】
上記目的を達成するために、本発明の機能性連続急速冷凍装置は、被冷凍物が収容される冷凍室と、該冷凍室の中央部に仕切り壁状に配設され上記冷凍室を第1冷凍区画と第2冷凍区画に区画する冷却用熱交換器と、上記第1冷凍区画を介して上記冷却用熱交換器と対面状に配設される第1送風ファンと、上記第2冷凍区画を介して上記冷却用熱交換器と対面状に配設される第2送風ファンと、を備えたものである。
また、上記冷却用熱交換器によって発生する上記冷凍室内の冷気を、上記第1冷凍区画から上記第2冷凍区画への流れと、上記第2冷凍区画から上記第1冷凍区画への流れとに、所定時間毎に切り換わるように、上記第1送風ファンと上記第2送風ファンのファン回転方向を制御するファン制御部を具備するものである。
【発明の効果】
【0008】
本発明によれば、被冷凍物の表面全体に万遍なく冷気が押し包むように流れ、最大氷結晶生成帯を短時間で突破し、被冷凍物の中心部が短時間で所定の温度に到達し、理想的な急速冷凍を行なうことができる。多種多様な食品・食材等の冷凍加工物を高品質かつ低コストで長時間連続的に運転し得る。冷凍による品質の劣化を極力少なくできる。
また、冷凍食品(冷凍加工物)は、利便性が高く、現在の食生活にすっかり根付いている。スーパーでも解凍された魚などが比較的安価に販売されているが、どうせ解凍品だからと揶揄される事が多いのも事実である。しかしながら、世界の何処でも、とれたての魚介類や新鮮な肉や野菜を味わえるとなれば、また、季節に関係なく旬のものをいつでも味わえる事はグルメの人々だけでなく一般大衆にとって、さらには老健施設を生活の場としているお年寄りの方にとって、日々の楽しみに寄与し、世界の人々の豊かな食生活に多大に貢献し得る。
【図面の簡単な説明】
【0009】
【図1】本発明に係る機能性連続急速冷凍装置の実施の一形態を示す簡略正面断面図である。
【図2】作用を説明する簡略正面断面図である。
【図3】他の実施形態を示す簡略正面断面図である。
【図4】他の実施形態の作用を説明する簡略正面断面図である。
【図5】他の実施形態の斜視図である。
【図6】別の実施形態を示す簡略正面断面図である。
【図7】別の実施形態の作用を説明する簡略正面断面図である。
【図8】従来例を示す簡略正面断面図である。
【発明を実施するための形態】
【0010】
以下、図示の実施形態に基づき本発明を詳説する。
本発明に係る機能性連続急速冷凍装置は、図1及び図2に示すように、食品や食材等の被冷凍物Qが収容される冷凍室2と、冷凍室2の左右方向の中央部に仕切り壁状に配設される冷却用熱交換器(冷媒蒸発器)1と、を備えている。
冷凍室2を、冷却用熱交換器1(以下、冷却器1と呼ぶ場合もある)によって、第1冷凍区画2aと、第2冷凍区画2bと、に二分割している。
【0011】
冷却器1は、周囲の空気を冷却して冷気を発生させるものであり、内部に冷媒ガス等の冷却用媒体が送流している。
そして、冷却器1の一方面1a側から他方面1b側、及び、他方面1b側から一方面1a側へ、空気(冷気)が送流可能な形状である。例えば、蛇行形状や梯子形状の冷媒管や、複数の放熱フィンや冷媒流路を有すると共に冷気用貫孔を有するブロック形状等である。つまり、冷気が通過可能であれば形状は自由である。
【0012】
また、第1冷凍区画2aを介して冷却器1の一方面1aと対面状に、かつ、冷凍室2の左右一方の内側壁側(寄り)に配設される第1送風ファン5と、第2冷凍区画2bを介して冷却器1の他方面1bと対面状に、かつ、冷凍室2の左右他方の内側壁側(寄り)に配設される第2送風ファン6と、を備えている。第1・2送風ファン5,6は、ファン回転方向を正転・逆転操作することで、送風方向(吹き出し方向と吸込み方向)を変更可能なものである。
【0013】
つまり、図1及び図2の実施形態は、冷却器1と、冷却器1が中央部に配設され第1冷凍区画2aと第2冷凍区画2bが形成される冷凍室2と、第1・第2送風ファン5,6と、を備えた冷凍ユニットYを1つ備えている。
【0014】
そして、第1・2送風ファン5,6の起動・停止制御、ファン回転方向の正転・逆転制御、ファンの風速(回転数)制御等が可能なファン制御部8を備えている。ファン制御部8はCPU等の演算処理手段と記憶手段(ハードディスクやフラッシュメモリ、RAMやROM等)を備えているコンピュータ等である。
ファン制御部8は、冷気(冷凍室2内の空気)を図1に示す矢印Jのように第1冷凍区画2aから冷却器1を通過させて第2冷凍区画2bへの流れと、図2に示す矢印Kのように第2冷凍区画2bから冷却器1を通過させて第1冷凍区画2aへの流れと、に第1・2送風ファン5,6のファン回転方向を切換制御する冷気流反転制御(ファン反転制御)を行なうものである。また、ファン制御部8は、冷気流反転制御を所定時間毎に行なう。
【0015】
また、第1送風ファン5の反冷凍区画側と、第2送風ファン6の反冷凍区画側と、を接続する(連結する)戻し流路71を有している。
戻し流路71は、第1・2送風ファン5,6が図1の矢印J方向の冷気流れを発生させる際に第2送風ファン6によって吹き出される冷気を第1送風ファン5の吸込み側へ送ると共に、第1・2送風ファン5,6が図2の矢印K方向の冷気流れを発生させる際に第1送風ファン5によって吹き出される冷気を第2送風ファン6の吸込み側へ送る、冷気循環用流路である。
【0016】
次に、図3乃至図5に示す他の実施形態は、上述の冷凍ユニットYを上下方向に隣り合うように2つ並列状に設けたものである。つまり、上下一方の冷凍ユニットYと、上下他方の冷凍ユニットYと、を備えている。
【0017】
図3及び図4に於て、上下一方の冷凍ユニットYの第1送風ファン5の反冷凍区画側と、上下他方の冷凍ユニットYの第1送風ファン5の反冷凍区画側と、を連結する第1連通路72を設けている。また、上下一方の冷凍ユニットYの第2送風ファン6の反冷凍区画側と、上下他方の冷凍ユニットYの第2送風ファン6の反冷凍区画側と、を連結する第2連通路73を設けている。第1連通路72及び第2連通路73は冷気循環用流路である。
また、上下一方の冷凍ユニットYと上下他方の冷凍ユニットYで1つの冷却器1を共用している。
【0018】
図3に示すように、ファン制御部8は、上下一方の冷凍ユニットYにおいて冷気が矢印J方向に流れるように(冷気を第1冷凍区画2aから冷却器1を通過させて第2冷凍区画2bへ流れるように)第1・第2送風ファン5,6のファン回転方向を制御すると共に、上下他方の冷凍ユニットYにおいて冷気が矢印K方向に流れるように(冷気を第2冷凍区画2bから冷却器1を通過させて第1冷凍区画2aへ流れるように)第1・第2送風ファン5,6のファン回転方向を制御する第1循環冷気流発生制御を行なう。
【0019】
また、図4に示すように、ファン制御部8は、上下一方の冷凍ユニットYにおいて冷気が矢印K方向に流れるように(冷気を第2冷凍区画2bから冷却器1を通過させて第1冷凍区画2aへ流れるように)第1・第2送風ファン5,6のファン回転方向を制御すると共に、上下他方の冷凍ユニットYにおいて冷気が矢印J方向に流れるように(冷気が第1冷凍区画2aから冷却器1を通過させて第2冷凍区画2bへ流れるように)第1・第2送風ファン5,6のファン回転方向を制御する第2循環冷気流発生制御を行なう。つまり、第1循環冷気流発生制御とは逆(周り)方向の冷気流を発生させる第2循環冷気流発生制御を行なう。
【0020】
そして、ファン制御部8は、上述の第1循環冷気流発生制御と、上述の第2循環冷気流発生制御と、切り換わるようにファン回転方向を制御する冷気流反転制御を、所定時間毎に(交互に)行なう。
【0021】
なお、図示省略するが、冷凍ユニットYを前後方向(奥行き方向)に隣合うように2つ並列状に設けても良い。そして、図3及び図4の実施形態と同様に、第1連通路72と第2連通路73を設け、ファン制御部8にて、冷気流反転制御を、所定時間毎に行なうように構成するもよい。つまり、図3及び図4を用いて説明した構成に於て「上下一方の冷凍ユニットY」を「前後一方の冷凍ユニットY」に、「上下他方の冷凍ユニットY」を「前後他方の冷凍ユニットY」に、置き換えた構成である。
【0022】
次に、図6及び図7に示す別の実施形態は、上述の冷凍ユニットYを左右方向に隣り合うように2つ直列状に設けたものである。つまり、左右一方の冷凍ユニットYと、左右他方の冷凍ユニットYと、を備えている。
【0023】
また、左右一方の冷凍ユニットYの第1送風ファン5の反冷凍区画側と、左右他方の冷凍ユニットYの第2送風ファン6の反冷凍区画側と、を連結する連結流路74(冷気循環用流路)を設けている。
また、左右一方の冷凍ユニットYの第2送風ファン6と、左右他方の冷凍ユニットYの第1送風ファン5と、を共用(併用)し、共用送風ファン7としている。
【0024】
図6に示すように、ファン制御部8は、左右一方の冷凍ユニットYにおいて冷気を矢印J方向に流し(冷気を第1冷凍区画2aから冷却器1を通過させて第2冷凍区画2bへ流し)、さらに、左右他方の冷凍ユニットYにおいて冷気を矢印J方向に流れるように(第1冷凍区画2aから冷却器1を通過させて第2冷凍区画2bへ流れるように)、左右一方の冷凍ユニットYの第1送風ファン5と、共用送風ファン7と、左右他方の冷凍ユニットYの第2送風ファン6のファン回転方向を制御する第1左右方向冷気流発生制御を行なう。
【0025】
また、図7に示すように、ファン制御部8は、左右他方の冷凍ユニットYにおいて冷気を矢印K方向に流し(冷気を第2冷凍区画2bから冷却器1を通過して第1冷凍区画2aへ流し)、さらに、左右一方の冷凍ユニットYにおいて冷気が矢印K方向に流れるように(第2冷凍区画2bから冷却器1を通過させて第1冷凍区画2aへ流れるように)、左右一方の冷凍ユニットYの第1送風ファン5と、共用送風ファン7と、左右他方の冷凍ユニットYの第2送風ファン6のファン回転方向を制御する第2左右方向冷気流発生制御を行なう。
【0026】
そして、ファン制御部8は、上述の第1左右方向冷気流発生制御と、上述の第2左右方向冷気流発生制御と、切り換わるようにファン回転方向を制御する冷気流反転制御を、所定時間毎に(交互に)行なう。
【0027】
また、本発明の機能性連続急速冷凍装置は、被冷凍物Qの出し入れを、各冷凍区画に応じて行なえるように、例えば、図5に示すように、各冷凍区画に対応する扉21を設けている。また、図示省略するが各冷凍区画には、被冷凍物Qを収容可能な網籠状の前後方向スライド自在な引き出し部材、或いは、スライド自在な網棚を設けた、バッチ型(式)の急速冷凍装置である。
【0028】
また、第1・第2送風ファン5,6のファン回転方向を、ファン制御部8にて制御して、被冷凍物Qの大きさや形状を考慮して、双方向(左右方向)から冷気を同時に吹き付ける対向冷気流発生制御をおこなって冷却(冷凍)時間を短縮させるようにしても良い。
また、第1冷凍区画2aに対応する第1送風ファン5を複数設けて第1送風ファン群を形成し、第2冷凍区画2bに対応する第2送風ファン6を複数設けて第2送風ファン群を形成しても良い。そして、ファン制御部8によって、第1送風ファン群内のいくつかのファンを選択して作動させると共に、第2送風ファン群内のいくつかのファンを選択して作動させ、上昇冷気流発生制御、下降冷気流発生制御、乱冷気流発生制御、正面視上下傾斜状冷気流発生制御、平面視前後傾斜状冷気流発生制御等、様々な冷気流発生制御を行なうようにするも良い。被冷凍物Qの形状や大きさに対応させて、様々な種類の気流を発生させることで、被冷凍物Qの形状や大きさに左右されずに、被冷凍物Qの表面全体を冷気で押し包むようにして、冷却作動時間を短縮させても良い。また、ファン制御部8にて冷気流反転制御と、上述の様々な冷気流発生制御を組み合わせて、所定の順序で所定時間毎に急速冷凍を行なうようにするも良い。
【0029】
また、冷凍室2の中央部に、冷却器1を設けることにより、図1及び図2のような2区画又は図3及び図4のような4区画と小分け(区画)が容易なため、奥行き(前後方向)寸法を大きくして、さらに、小分けして、多品種、多変形な被冷凍物Qを、各冷凍区画2a,2bに分別して夫々収納しても良い。
また、設定温度(冷却温度)と風速と被冷凍物の大きさ(厚み)や種類で、作動時間が逆算可能となるため、各冷凍区画2a,2bに対応するタイマーを設け、タイマーとファン制御部8の供働きによってファンのON−OFF制御を行なっても良い。
従来は、冷却作動時間の設定は経験に依る事が多く、また、冷却作動時間を長目に設定することが多かった為、時間の無駄や冷凍のやり直し等がおこり効率が悪かったが、タイマー制御により誰でも(冷凍見極めの経験が豊富な者でなくとも)容易に、効率良く、夫々、適切な時間(例えば、ブリのフィレで厚み60mmのものは、風速3.5m/秒で、−40℃に設定すると、冷却作動時間は60分)をもって冷却し、無駄のない、さらなるコストダウン効果が得られる。
【0030】
次に、本発明の機能性連続急速冷凍装置の使用方法(作動)について説明する。
図1に於て、ファン制御部8からの命令信号によって、第1送風ファン5と第2送風ファン6が作動して、第1冷凍区画2aから第2冷凍区画2bに向かって、矢印J方向への前後方向水平状の冷気流を発生させる。所定時間後、ファン制御部8からの命令信号によって、第1送風ファン5と第2送風ファン6が逆回転して(冷気流反転制御が行なわれ)、図2に示すような、第2冷凍区画2bから第1冷凍区画2aに向かって、矢印K方向への前後方向水平状の冷気流を発生させる。そして、冷気流の方向(ファンの回転方向)を切り換える冷気流反転制御を、所定時間毎に行い、所定作動時間、冷却(冷凍)を行なう。
【0031】
冷凍室2内で冷気が一部に偏在(滞留)せず、また、被冷凍物Qの左右両側から冷気が交互に当たって、被冷凍物Qの表面全体から均一かつ急速に冷却が進み、被冷却物Qの内部(中心部)の温度が、最大氷結晶帯を速やかに(短時間で)通過するように低下して、所望の温度に容易に短時間で到達する。つまり、組織細胞中の氷結晶が大きくならず、組織細胞が破壊されずに凍結する。
また、第1送風ファン5及び第2送風ファン6の一方が、冷気を冷凍区画に向かって吹き付けるようにし(有圧作動)、第1送風ファン5及び第2送風ファン6の他方が、冷凍区画から冷気を吸い込むように(負圧作動)、することで、冷凍室2内の冷気の流れが安定すると共に、冷気の循環が効率良く行なわれる。
【0032】
また、冷却器1の冷気が吹き付けられる側は、霜が発生して成長する虞がある。例えば、図1の矢印J方向の冷気流の場合、冷却器1の一方面1a側には冷気が吹き付けられ(有圧風を受けて)霜が発生して大きく成長する虞がある。
しかし、所定時間後に、冷気流の方向が逆となり、(図2の矢印K方向の冷気流れとなり)、冷却器1の一方面1a側の霜は、第1送風ファン5による吸込み(負圧風)によって除霜(デフロスト)される。
【0033】
例えば、図1に於て、冷却器1は、一方面1a側が霜発生状態(着霜状態)で、他方面1b側がデフロスト状態(除霜状態または、霜無し状態)であるが、ファン制御部8によって冷気流反転制御が行なわれると、図2に示すような冷気流となり、一方面1b側がデフロスト状態(除霜状態または、霜無し状態)となり、他方面1b側が霜発生状態(着霜状態)となる。
【0034】
つまり、ファン制御部8にて冷気流反転制御を所定時間毎に行なうことで、冷却器1の一方面1aと他方面1bを、交互にデフロストして、冷却器1に付着する霜を除去して(成長させず)、霜による冷却性能の低下を防止している。冷却(冷凍)運転と除霜運転とを同時に行なって、冷凍運転を(除霜のために)一時停止させずに、連続冷却(冷凍)運転を可能としている。
なお、図3乃至図7の実施形態も、上述の冷却作用及び徐霜作用が得られ、被冷凍物Qを効率良く冷凍する。
【0035】
ここで、図3及び図4の実施形態のものを実施例とし、図8に示すような従来の急速冷凍装置を比較例として、官能試験を行なった。
先ず、官能試験に用いる被冷凍物Qは、冷凍に対する問題が発生しやすく、食感や風味で品質の良否が判断し易いものを選択した。
下記表1に、被冷凍物Q(食品・食材)、試験前の形状や前処理、冷凍にした際に発生し得る問題点等を示す。
【0036】
【表1】
【0037】
また、図7に示すような従来の急速冷凍装置であって、製造メーカの異なるものを、夫々、比較例A、比較例B、比較例C、比較例Dとする。そして、各比較例A〜Dを作動させて、上記表1の(イ)〜(ニ)の被冷凍物Qを冷凍し、その後、−25℃の冷凍庫で保管し、1カ月後に自然解凍させて官能試験を行なった。評価は、風味と食感について、夫々、1点〜5点までの5段階評価とした。具体的には、表1の問題点を全く解決出来ておらず、著しく品質が低下していたものを、1点とした。また、表1の問題点を解決出来ておらず、品質が低下していたものを、2点とした。また、表1の問題点を解決不足で、品質が若干低下していたものを、3点とした。また、表1の問題点をやや解決して、品質が僅かに低下していたものを、4点とした。また、表1の問題点を解決して、品質が冷凍前と変わらないものを5点とした。
【0038】
比較例A〜Dの結果を下記表2に示す。従来の急速冷凍装置(比較例)は、品質劣化の問題点を解決できていないことが明らかであった。
【0039】
【表2】
【0040】
次に、実施例の結果を下記表3に示す。従来の急速冷凍装置(比較例)と比べて、品質の劣化が小さいことが明らかとなった。
この結果から、冷却器1の位置、送風ファン5,6の配置、ファンの回転制御等に着目したことで、従来では冷凍に問題があるとされた被冷凍物Qであっても、品質の劣化が少なくなったと言える。
なお、冷却温度は−40℃前後(−38℃〜−42℃)が最適であったが、−35℃〜−55℃の範囲でも十分に品質が保持されていた。また、風速は、3.5m/秒前後(3.0m/秒〜4.0m/秒)が十分に品質が保持され使用電気量が少なく経済的であったが、2m/秒〜8m/秒でも十分な品質保持が確認できた。また、霜による冷却器1の冷却性能低下が殆ど無く、効率が良かった。なお、長時間(8時間以上)の作動ではデフロストの無駄な時間が削減でき、効率が良かった。
【0041】
【表3】
【0042】
また、被冷凍物Qを魚介類、肉類、野菜類、加工食品と分類し、実施例について官能試験を行なった。
評価は、冷凍前の色調(色合い)、味、香り、食感について、味の専門家10人がモニターとして評価した。
また、評価は、1点〜5点までの5段階評価とした。具体的には、品質劣化が著しいものを、1点とした。また、明らかに品質が落ちているものを、2点とした。また、品質がやや落ちて、冷凍物と感じるものを、3点とした。また、殆ど変わらず十分に評価し得るものを、4点とした。また、全く変わらず高品質を維持しているものを5点とした。
また、被冷凍物Qを、各冷凍区画の収容可能内容積に対して4分の1収納した。冷気の流れを10分毎に切り換わるようにファン制御部8を設けた。
そして、冷凍後に、−25℃の冷凍庫で保管し、2カ月後に、解凍して、官能試験を行なった。解凍は、魚介類や肉類は+2℃〜+3℃の冷蔵庫内にて、野菜類や加工食品は種類に応じて、湯せんや電子レンジ、自然解凍等を行なった。
【0043】
先ず、下記表4に、魚介類の官能試験の結果を示す。下記表4から明らかなように、(小型の)魚介類の場合、従来よりも短い作動時間に関わらず、冷凍前と比べてほぼ遜色のない高品質に冷凍し得た事が如実に示された。
また、冷却(冷凍)作動コストを重視して、冷却温度を−35℃から−40℃としても十分な効果が得られることが明らかとなった。また、表4に記載の魚介類以外についても同様の評価が得られた。
【0044】
【表4】
【0045】
次に、下記表5に、肉類の官能試験の結果を示す。下記表5から明らかなように、牛肉、豚肉ともドリップはほぼ皆無で、冷凍前の品質を維持していた。なお、下記表5以外の風速及び作動時間でも同様に高い評価(品質)が得られた。
【0046】
【表5】
【0047】
次に、下記表6に、野菜の官能試験の結果を示す。下記表6から明らかなように、野菜も殆ど劣化することはなかった。なお、下記記の表6はブランチングを行なった場合の結果であるが、生で(ブランチングなし)で凍結させ、その後、熱湯で調理した場合、又は、自然解凍した場合、評価は全て5であった。野菜本来の甘みや風味が増して、ブランチングした場合よりも数段優れていた。
また、表6に記載以外の種々の野菜類についても、風速等の条件を変えて急速冷凍を行なったが水分含量の多いもの(例えば大根やキュウリ)を除いては、ほぼ同様の結果が得られた。
【0048】
【表6】
【0049】
次に、下記表7に、加工食品の官能試験の結果を示す。下記表7から明らかなように、製造直後の品質をほぼ維持していた。また、下記表7に記載したもの以外に、例えば、タコ焼き、そら豆、油揚げ、ショートケーキ、ロールケーキ、パン、ロールキャベツ等も、風速や作動時間、冷却温度を換えて急速冷凍したが、下記表7と同様の評価(品質)が得られた。
また、モニターによっては、お茶漬けや炒飯に、この冷凍したご飯を用いた方が、冷凍していないご飯を用いる場合よりも美味しくなるとの報告を受けた。
なお、図1と図2、及び、図6と図7の実施形態のもので上述の官能試験をおこなっても、同様の結果(品質)が得られた。
【0050】
【表7】
【0051】
また、上述の結果から、被冷凍物Qを冷凍する際に、冷却温度は、−35℃〜−55℃、風速は2m/秒〜8m/秒、で十分な品質が得られていることが明らかとなった。なお、風量は風速に比例で特に問題視することはなかった。また。冷気の流れは被冷凍物Qに万遍なく接して、品質劣化なく、ほぼ完璧に急速冷凍し得た。また、冷凍時間はコストの点からも従来のものより短く設定しても十分に好成績が得られる事が明らかとなった。
【0052】
なお、本発明は、設計変更可能であって、図1及び図2に於て、戻し流路71を冷凍室2内に設け、戻し流路71内を通過する戻り冷気が冷却器1を通過するように構成しても良い。また、図3及び図4に於て、冷却器1を共用とせず、一方の冷凍ユニットYと、他方の冷凍ユニットYに個別に設けても良い。
【0053】
以上のように、本発明の機能性連続急速冷凍装置は、被冷凍物Qが収容される冷凍室2と、冷凍室2の中央部に仕切り壁状に配設され冷凍室2を第1冷凍区画2aと第2冷凍区画2bに区画する冷却用熱交換器1と、第1冷凍区画2aを介して冷却用熱交換器1と対面状に配設される第1送風ファン5と、第2冷凍区画2bを介して冷却用熱交換器1と対面状に配設される第2送風ファン6と、を備えたので、冷気流が一部に偏在するのを防止でき、真の急速冷凍が可能となる。また、冷却器1の冷却能力は−35℃〜−40℃(又は、−38℃〜−42℃)で十分な効果が得られるため、従来の−55℃(−50℃より低い温度)で冷却する場合にくらべて、電気使用量を1/2.5(40%)〜1/2(50%)のコストダウン効果が得られる。また、電場、磁場等を発生させる必要がないため、製造コストやランニングコストの削減を実現できる。被冷凍物Qの表面全体に万遍なく冷気が押し包むように流れ、最大氷結晶生成帯を短時間で突破し、被冷凍物Qの中心部が短時間で所定の温度に到達し、理想的な急速冷凍を行なうことができる。多種多様な食品・食材等の冷凍物加工品(冷凍食品)を高品質かつ低コストで長時間連続的に運転し得る。冷凍による品質の劣化を極力少なくできる。また、強い冷気流が万偏なく、被冷凍物Qに接するようにして、均一に冷凍が進み、被冷却物Qの中心部が所望の温度に到達するまでの時間が、従来の1/2(50%)〜2/3(67%)で到達でき、氷結晶の成長が殆どなく、高品質の冷凍品が生産可能となる。
【0054】
また、冷却用熱交換器1によって発生する冷凍室2内の冷気を、第1冷凍区画2aから第2冷凍区画2bへの流れと、第2冷凍区画2bから第1冷凍区画2aへの流れとに、所定時間毎に切り換わるように、第1送風ファン5と第2送風ファン6のファン回転方向を制御するファン制御部8を具備するので、第1・第2送風ファン5,6のファン回転方向による有圧・負圧(圧力差)を効果的に利用して、風量と冷気の流れ方向をコントロール(制御)し、強い冷気流が万偏なく、被冷凍物Qに接するようにして、均一に冷凍が進み、被冷却物Qの中心部が所望の温度に到達するまでの時間が短く(速く)、氷結晶の成長が殆どなく、高品質の冷凍品が生産可能となる。また、冷気の流れ方向を所定時間毎(例えば10〜15分毎)に変えることにより、冷気を有効に被冷凍物Qに接触させることに加え、デフロスト(除霜作業)を実現でき、冷却器1の性能を低下させる事なく、効率的な冷凍運転をおこなうことができる。急速冷凍運転(工程)とデフロスト運転(工程)を同時におこなえ、冷却(冷凍)運転を、(除霜のために)一時停止させず、15〜24時間以上の連続冷凍運転を可能としている。霜による冷却器1の冷凍能力の低下やコンプレッサーが過負荷となる故障を防止できる。
【符号の説明】
【0055】
1 冷却用熱交換器
2 冷凍室
2a 第1冷凍区画
2b 第2冷凍区画
5 第1送風ファン
6 第2送風ファン
8 ファン制御部
Q 被冷凍物
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
【図8】
【国際調査報告】