(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO2014057534
(43)【国際公開日】20140417
【発行日】20160825
(54)【発明の名称】可変圧縮比機構を備える内燃機関
(51)【国際特許分類】
   F02D 23/00 20060101AFI20160729BHJP
   F02D 43/00 20060101ALI20160729BHJP
   F02B 75/04 20060101ALI20160729BHJP
【FI】
   !F02D23/00 L
   !F02D43/00 301R
   !F02D43/00 301S
   !F02B75/04
【審査請求】有
【予備審査請求】未請求
【全頁数】25
【出願番号】2014540651
(21)【国際出願番号】JP2012076142
(22)【国際出願日】20121009
(11)【特許番号】5854152
(45)【特許公報発行日】20160209
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
【住所又は居所】愛知県豊田市トヨタ町1番地
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100092624
【弁理士】
【氏名又は名称】鶴田 準一
(74)【代理人】
【識別番号】100102819
【弁理士】
【氏名又は名称】島田 哲郎
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100130133
【弁理士】
【氏名又は名称】曽根 太樹
(74)【代理人】
【識別番号】100153729
【弁理士】
【氏名又は名称】森本 有一
(72)【発明者】
【氏名】田中 宏幸
【住所又は居所】愛知県豊田市トヨタ町1番地 トヨタ自動車株式会社内
【テーマコード(参考)】
3G092
3G384
【Fターム(参考)】
3G092AA12
3G092AA18
3G092DA01
3G092DA08
3G092DB03
3G092DD07
3G092EA01
3G092EA13
3G092HA06Z
3G092HA14Z
3G092HA16Z
3G384BA08
3G384BA22
3G384FA04Z
(57)【要約】
本発明による可変圧縮比機構を備える内燃機関は、ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し(ステップ103)、機械圧縮比を変更する際には(ステップ111)、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正する(ステップ114)。
【特許請求の範囲】
【請求項1】
ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機械圧縮比を変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正することを特徴とする可変圧縮比機構を備える内燃機関。
【請求項2】
機関運転状態が変化していないときに機械圧縮比を現在の機関運転状態に対する目標機械圧縮比へ変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正しないことを特徴とする請求項1に記載の可変圧縮比機構を備える内燃機関。
【請求項3】
ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほど前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度をより増加側へ補正することを特徴とする請求項1に記載の可変圧縮比機構を備える内燃機関。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可変圧縮比機構を備える内燃機関に関する。
【背景技術】
【0002】
シリンダブロックを気筒軸線に沿わせてクランクケースに対して相対移動させることにより機械圧縮比を可変とする可変圧縮比機構を備える内燃機関が公知である。一般的に、機関負荷が低いほど熱効率が低くなるために、このような可変圧縮比機構を備える内燃機関では、機関負荷が低いほど機械圧縮比を高くすることにより膨張比を高くして熱効率を高めている。
【0003】
可変圧縮比機構を備える内燃機関においても、排気エネルギーを利用するターボチャージャにより機関出力を高めることが提案されている(特許文献1参照)。そのために、機関吸気系にはターボチャージャのコンプレッサが配置され、機関排気系にはターボチャージャのタービンが配置されると共に、タービンをバイパスするウェイストゲート通路が設けられている。ウェイストゲート通路にはウェイストゲートバルブが配置され、その開度を制御することにより、タービン回転数を変化させてコンプレッサの過給圧を所望過給圧に制御するようになっている。
【0004】
このような可変圧縮比機構を備える内燃機関において、現在の機関運転状態に対してそれぞれの目標機械圧縮比が設定されており、現在の目標機械圧縮比が実現されるように可変圧縮比機構が制御される。また、ウェイストゲートバルブの開度も、現在の機関運転状態に対して所望の過給圧が実現されるように目標開度が設定されている。
【0005】
ところで、可変圧縮比機構を備える内燃機関において、ノッキングが発生したときには、機械圧縮比を目標機械圧縮比より低下させることが提案されている(特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】国際公開WO2010/125694
【特許文献2】特開2006−177176
【特許文献3】特開2006−291934
【特許文献4】特開2008−196407
【発明の概要】
【発明が解決しようとする課題】
【0007】
可変圧縮比機構を備える内燃機関において、ノッキング抑制のように機関運転状態が変化していないのに機械圧縮比を低下させると、そのままではターボチャージャの過給圧を所望過給圧に制御することができなくなってしまう。
【0008】
また、機関運転状態が変化する機関過渡時において、機械圧縮比が変更され、このときにウェイストゲートバルブを各時刻の機関運転状態毎の目標開度に制御しても、ターボチャージャの過給圧を所望過給圧に制御することができないことがある。
【0009】
従って、本発明の目的は、可変圧縮比機構を備える内燃機関であって、ターボチャージャを具備し、ウェイストゲートバルブの開度が機関運転状態毎の目標開度に制御され、機関運転状態が変化していないときに又は機関過渡時において機械圧縮比を変更してもターボチャージャの過給圧を所望過給圧に制御可能とすることである。
【課題を解決するための手段】
【0010】
本発明による請求項1に記載の可変圧縮比機構を備える内燃機関は、ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機械圧縮比を変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正することを特徴とする。
【0011】
本発明による請求項2に記載の可変圧縮比機構を備える内燃機関は、請求項1に記載の可変圧縮比機構を備える内燃機関において、機関運転状態が変化していないときに機械圧縮比を現在の機関運転状態に対する目標機械圧縮比へ変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正しないことを特徴とする。
【0012】
本発明による請求項3に記載の可変圧縮比機構を備える内燃機関は、請求項1に記載の可変圧縮比機構を備える内燃機関において、ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほど前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度をより増加側へ補正することを特徴する。
【発明の効果】
【0013】
本発明による請求項1に記載の可変圧縮比機構を備える内燃機関によれば、ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機械圧縮比を変更する際には、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正するようになっている。機械圧縮比の変更により膨張比が変化して熱効率も変化するために、排気ガスの温度及び圧力が変化する。機関運転状態が変化していないとして、ウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができなくなってしまう。それにより、このときには、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することが可能となる。
【0014】
また、機関過渡時において機械圧縮比を変更する際には、機械圧縮比の応答遅れによって、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができないことがある。それにより、このときには、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することが可能となる。
【0015】
本発明による請求項2に記載の可変圧縮比機構を備える内燃機関によれば、請求項1に記載の可変圧縮比機構を備える内燃機関において、ウェイストゲートバルブの現在の機関運転状態の目標開度は、現在の機関運転状態に対する目標機械圧縮比が実現されることを前提するものであるために、機関運転状態が変化していないときに機械圧縮比を現在の機関運転状態に対する目標機械圧縮比へ変更する際には、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正しないようになっている。
【0016】
本発明による請求項3に記載の可変圧縮比機構を備える内燃機関によれば、請求項1に記載の可変圧縮比機構を備える内燃機関において、ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほどウェイストゲートバルブの現在の機関運転状態の目標開度をより増加側へ補正するようになっている。ノッキングが発生していた気筒の実際の機械圧縮比は、ノッキングが発生していなかった気筒の実際の機械圧縮比より高く、ノッキング発生を抑制するために全体の機械圧縮比を低下させると、ノッキングが発生していなかった気筒の実際の機械圧縮比は大きく低下して熱効率も大きく悪化し、排気ガス温度及び圧力が高くなるために、ノッキングが発生していなかった気筒数が多いほどウェイストゲートバルブの現在の機関運転状態に対する目標開度をより増加側へ補正することにより、ターボチャージャの過給圧を所望過給圧に制御して過給圧が過剰に高まらないようにしている。
【図面の簡単な説明】
【0017】
【図1】内燃機関の全体図である。
【図2】可変圧縮比機構の分解斜視図である。
【図3】図解的に表した内燃機関の側面断面図である。
【図4】可変バルブタイミング機構を示す図である。
【図5】吸気弁および排気弁のリフト量を示す図である。
【図6】機械圧縮比、実圧縮比および膨張比を説明するための図である。
【図7】理論熱効率と膨張比との関係を示す図である。
【図8】通常のサイクルおよび超高膨張比サイクルを説明するための図である。
【図9】機関負荷に応じた機械圧縮比等の変化を示す図である。
【図10】ターボチャージャの配置を示す本内燃機関の概略全体図である。
【図11】機械圧縮比とウェイストゲートバルブの開度とを制御するためのフローチャートである。
【図12】点火時期の遅角量と機械圧縮比の変更量との関係を示すマップである。
【図13】機械圧縮比の変更量とウェイストゲートバルブの目標開度の補正量との関係を示すマップである。
【図14】機関過渡時の制御を示すタイムチャートである。
【発明を実施するための形態】
【0018】
図1は本発明による可変圧縮比機構を備える内燃機関の側面断面図を示す。図1を参照すると、1はクランクケース、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は燃焼室5の頂面中央部に配置された点火栓、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートを夫々示す。吸気ポート8は吸気枝管11を介してサージタンク12に連結され、各吸気枝管11には夫々対応する吸気ポート8内に向けて燃料を噴射するための燃料噴射弁13が配置される。なお、燃料噴射弁13は各吸気枝管11に取付ける代りに各燃焼室5内に配置してもよい。
【0019】
サージタンク12は吸気ダクト14を介してエアクリーナ15に連結され、吸気ダクト14内にはアクチュエータ16によって駆動されるスロットル弁17と例えば熱線を用いた吸入空気量検出器18とが配置される。排気ポート10は排気マニホルド19を介して例えば三元触媒を内蔵した触媒装置20に連結され、排気マニホルド19内には空燃比センサ21が配置される。
【0020】
一方、図1に示される実施例ではクランクケース1とシリンダブロック2との連結部にクランクケース1とシリンダブロック2のシリンダ軸線方向の相対位置を変化させることによりピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更可能な可変圧縮比機構Aが設けられており、更に実際の圧縮作用の開始時期を変更可能な実圧縮作用開始時期変更機構Bが設けられている。なお、図1に示される実施例ではこの実圧縮作用開始時期変更機構Bは吸気弁7の閉弁時期を制御可能な可変バルブタイミング機構からなる。
【0021】
図1に示されるようにクランクケース1とシリンダブロック2にはクランクケース1とシリンダブロック2間の相対位置関係を検出するための相対位置センサ22が取付けられており、この相対位置センサ22からはクランクケース1とシリンダブロック2との間隔の変化を示す出力信号が出力される。また、可変バルブタイミング機構Bには吸気弁7の閉弁時期を示す出力信号を発生するバルブタイミングセンサ23が取付けられており、スロットル弁駆動用のアクチュエータ16にはスロットル弁開度を示す出力信号を発生するスロットル開度センサ24が取付けられている。
【0022】
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。吸入空気量検出器18、空燃比センサ21、相対位置センサ22、バルブタイミングセンサ23、及び、スロットル開度センサ24の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して点火栓6、燃料噴射弁13、スロットル弁駆動用アクチュエータ16、可変圧縮比機構Aおよび可変バルブタイミング機構Bに接続される。
【0023】
図2は図1に示す可変圧縮比機構Aの分解斜視図を示しており、図3は図解的に表した内燃機関の側面断面図を示している。図2を参照すると、シリンダブロック2の両側壁の下方には互いに間隔を隔てた複数個の突出部50、すなわち、シリンダブロック側サポートが形成されており、各突出部50内には夫々断面円形のカム挿入孔51が形成されている。一方、クランクケース1の上壁面上には互いに間隔を隔てて夫々対応する突出部50の間に嵌合せしめられる複数個の突出部52、すなわち、クランクケース側サポートが形成されており、これらの各突出部52内にも夫々断面円形のカム挿入孔53が形成されている。
【0024】
図2に示されるように一対のカムシャフト54,55が設けられており、各カムシャフト54,55上には一つおきに各カム挿入孔53内に回転可能に挿入される同心部分58が位置している。各同心部分58は各カムシャフト54,55の回転軸線と共軸をなす。一方、各同心部分58の両側には図3に示すように各カムシャフト54,55の回転軸線に対して偏心配置された偏心部57が位置しており、この偏心部57上に別の円形カム56が偏心して回転可能に取付けられている。すなわち、偏心部57は円形カム56に形成された偏心孔に嵌合し、円形カム56は偏心孔を中心として偏心部57回りに回動するようになっている。図2に示されるようにこれら円形カム56は各同心部分58の両側に配置されており、これら円形カム56は対応する各カム挿入孔51内に回転可能に挿入されている。また、図2に示されるようにカムシャフト55にはカムシャフト55の回転角度を表す出力信号を発生するカム回転角度センサ25が取付けられている。
【0025】
図3(A)に示すような状態から各カムシャフト54,55の同心部分58を図3(A)において矢印で示される如く互いに反対方向に回転させると偏心部57が互いに離れる方向に移動するために円形カム56がカム挿入孔51内において同心部分58とは反対方向に回転し、図3(B)に示されるように偏心部57の位置が高い位置から中間高さ位置となる。次いで更に同心部分58を矢印で示される方向に回転させると図3(C)に示されるように偏心部57は最も低い位置となる。
【0026】
なお、図3(A)、図3(B)、図3(C)には夫々の状態における同心部分58の中心aと偏心部57の中心bと円形カム56の中心cとの位置関係が示されている。
【0027】
図3(A)から図3(C)とを比較するとわかるようにクランクケース1とシリンダブロック2の相対位置は同心部分58の中心aと円形カム56の中心cとの距離によって定まり、同心部分58の中心aと円形カム56の中心cとの距離が大きくなるほどシリンダブロック2はクランクケース1から離れる。即ち、可変圧縮比機構Aは回転するカムを用いたクランク機構によりクランクケース1とシリンダブロック2間の相対位置を変化させていることになる。シリンダブロック2がクランクケース1から離れるとピストン4が圧縮上死点に位置するときの燃焼室5の容積は増大し、従って各カムシャフト54,55を回転させることによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を変更することができる。
【0028】
図2に示されるように各カムシャフト54,55を夫々反対方向に回転させるために駆動モータ59の回転軸には夫々螺旋方向が逆向きの一対のウォーム61,62が取付けられており、これらウォーム61,62と噛合するウォームホイール63,64が夫々各カムシャフト54,55の端部に固定されている。この実施例では駆動モータ59を駆動することによってピストン4が圧縮上死点に位置するときの燃焼室5の容積を広い範囲に亘って変更することができる。
【0029】
一方、図4は図1において吸気弁7を駆動するためのカムシャフト70の端部に取付けられた可変バルブタイミング機構Bを示している。図4を参照すると、この可変バルブタイミング機構Bは機関のクランク軸によりタイミングベルトを介して矢印方向に回転せしめられるタイミングプーリ71と、タイミングプーリ71と一緒に回転する円筒状ハウジング72と、吸気弁駆動用カムシャフト70と一緒に回転しかつ円筒状ハウジング72に対して相対回転可能な回転軸73と、円筒状ハウジング72の内周面から回転軸73の外周面まで延びる複数個の仕切壁74と、各仕切壁74の間で回転軸73の外周面から円筒状ハウジング72の内周面まで延びるベーン75とを具備しており、各ベーン75の両側には夫々進角用油圧室76と遅角用油圧室77とが形成されている。
【0030】
各油圧室76,77への作動油の供給制御は作動油供給制御弁78によって行われる。この作動油供給制御弁78は各油圧室76,77に夫々連結された油圧ポート79,80と、油圧ポンプ81から吐出された作動油の供給ポート82と、一対のドレインポート83,84と、各ポート79,80,82,83,84間の連通遮断制御を行うスプール弁85とを具備している。
【0031】
吸気弁駆動用カムシャフト70のカムの位相を進角すべきときは図4においてスプール弁85が右方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート79を介して進角用油圧室76に供給されると共に遅角用油圧室77内の作動油がドレインポート84から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印方向に相対回転せしめられる。
【0032】
これに対し、吸気弁駆動用カムシャフト70のカムの位相を遅角すべきときは図4においてスプール弁85が左方に移動せしめられ、供給ポート82から供給された作動油が油圧ポート80を介して遅角用油圧室77に供給されると共に進角用油圧室76内の作動油がドレインポート83から排出される。このとき回転軸73は円筒状ハウジング72に対して矢印と反対方向に相対回転せしめられる。
【0033】
回転軸73が円筒状ハウジング72に対して相対回転せしめられているときにスプール弁85が図4に示される中立位置に戻されると回転軸73の相対回転動作は停止せしめられ、回転軸73はそのときの相対回転位置に保持される。従って可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相を所望の量だけ進角させることができ、遅角させることができることになる。
【0034】
図5において実線は可変バルブタイミング機構Bによって吸気弁駆動用カムシャフト70のカムの位相が最も進角されているときを示しており、破線は吸気弁駆動用カムシャフト70のカムの位相が最も遅角されているときを示している。従って吸気弁7の開弁期間は図5において実線で示す範囲と破線で示す範囲との間で任意に設定することができ、従って吸気弁7の閉弁時期も図5において矢印Cで示す範囲内の任意のクランク角に設定することができる。
【0035】
図1および図4に示される可変バルブタイミング機構Bは一例を示すものであって、例えば吸気弁の開弁時期を一定に維持したまま吸気弁の閉弁時期のみを変えることのできる可変バルブタイミング機構等、種々の形式の可変バルブタイミング機構を用いることができる。
【0036】
次に図6を参照しつつ本願において使用されている用語の意味について説明する。なお、図6の(A),(B),(C)には説明のために燃焼室容積が50mlでピストンの行程容積が500mlであるエンジンが示されており、これら図6の(A),(B),(C)において燃焼室容積とはピストンが圧縮上死点に位置するときの燃焼室の容積を表している。
【0037】
図6(A)は機械圧縮比について説明している。機械圧縮比は圧縮行程時のピストンの行程容積と燃焼室容積のみから機械的に定まる値であってこの機械圧縮比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(A)に示される例ではこの機械圧縮比は(50ml+500ml)/50ml=11となる。
【0038】
図6(B)は実圧縮比について説明している。この実圧縮比は実際に圧縮作用が開始されたときからピストンが上死点に達するまでの実際のピストン行程容積と燃焼室容積から定まる値であってこの実圧縮比は(燃焼室容積+実際の行程容積)/燃焼室容積で表される。即ち、図6(B)に示されるように圧縮行程においてピストンが上昇を開始しても吸気弁が開弁している間は圧縮作用は行われず、吸気弁が閉弁したときから実際の圧縮作用が開始される。従って実圧縮比は実際の行程容積を用いて上記の如く表される。図6(B)に示される例では実圧縮比は(50ml+450ml)/50ml=10となる。
【0039】
図6(C)は膨張比について説明している。膨張比は膨張行程時のピストンの行程容積と燃焼室容積から定まる値であってこの膨張比は(燃焼室容積+行程容積)/燃焼室容積で表される。図6(C)に示される例ではこの膨張比は(50ml+500ml)/50ml=11となる。
【0040】
次に図7および図8を参照しつつ本発明において用いられている超膨張比サイクルについて説明する。なお、図7は理論熱効率と膨張比との関係を示しており、図8は本発明において負荷に応じ使い分けられている通常のサイクルと超高膨張比サイクルとの比較を示している。
【0041】
図8(A)は吸気弁が下死点近傍で閉弁し、ほぼ吸気下死点付近からピストンによる圧縮作用が開始される場合の通常のサイクルを示している。この図8(A)に示す例でも図6の(A),(B),(C)に示す例と同様に燃焼室容積が50mlとされ、ピストンの行程容積が500mlとされている。図8(A)からわかるように通常のサイクルでは機械圧縮比は(50ml+500ml)/50ml=11であり、実圧縮比もほぼ11であり、膨張比も(50ml+500ml)/50ml=11となる。即ち、通常の内燃機関では機械圧縮比と実圧縮比と膨張比とがほぼ等しくなる。
【0042】
図7における実線は実圧縮比と膨張比とがほぼ等しい場合の、即ち通常のサイクルにおける理論熱効率の変化を示している。この場合には膨張比が大きくなるほど、即ち実圧縮比が高くなるほど理論熱効率が高くなることがわかる。従って通常のサイクルにおいて理論熱効率を高めるには実圧縮比を高くすればよいことになる。しかしながら機関高負荷運転時におけるノッキングの発生の制約により実圧縮比は最大でも12程度までしか高くすることができず、斯くして通常のサイクルにおいては理論熱効率を十分に高くすることはできない。
【0043】
一方、このような状況下で機械圧縮比と実圧縮比とを厳密に区分しつつ理論熱効率を高めることが検討され、その結果理論熱効率は膨張比が支配し、理論熱効率に対して実圧縮比はほとんど影響を与えないことが見い出されたのである。即ち、実圧縮比を高くすると爆発力は高まるが圧縮するために大きなエネルギーが必要となり、斯くして実圧縮比を高めても理論熱効率はほとんど高くならない。
【0044】
これに対し、膨張比を大きくすると膨張行程時にピストンに対し押下げ力が作用する期間が長くなり、斯くしてピストンがクランクシャフトに回転力を与えている期間が長くなる。従って膨張比は大きくすれば大きくするほど理論熱効率が高くなる。図7の破線ε=10は実圧縮比を10に固定した状態で膨張比を高くしていった場合の理論熱効率を示している。このように実圧縮比εを低い値に維持した状態で膨張比を高くしたときの理論熱効率の上昇量と、図7の実線で示す如く実圧縮比も膨張比と共に増大せしめられる場合の理論熱効率の上昇量とは大きな差がないことがわかる。
【0045】
このように実圧縮比が低い値に維持されているとノッキングが発生することがなく、従って実圧縮比を低い値に維持した状態で膨張比を高くするとノッキングの発生を阻止しつつ理論熱効率を大巾に高めることができる。図8(B)は可変圧縮比機構Aおよび可変バルブタイミング機構Bを用いて、実圧縮比を低い値に維持しつつ膨張比を高めるようにした場合の一例を示している。
【0046】
図8(B)を参照すると、この例では可変圧縮比機構Aにより燃焼室容積が50mlから20mlまで減少せしめられる。一方、可変バルブタイミング機構Bによって実際のピストン行程容積が500mlから200mlになるまで吸気弁の閉弁時期が遅らされる。その結果、この例では実圧縮比は(20ml+200ml)/20ml=11となり、膨張比は(20ml+500ml)/20ml=26となる。図8(A)に示される通常のサイクルでは前述したように実圧縮比がほぼ11で膨張比が11であり、この場合に比べると図8(B)に示される場合には膨張比のみが26まで高められていることがわかる。これが超高膨張比サイクルと称される所以である。
【0047】
一般的に言って内燃機関では機関負荷が低いほど熱効率が悪くなり、従って機関運転時における熱効率を向上させるためには、即ち燃費を向上させるには機関負荷が低いときの熱効率を向上させることが必要となる。一方、図8(B)に示される超高膨張比サイクルでは圧縮行程時の実際のピストン行程容積が小さくされるために燃焼室5内に吸入しうる吸入空気量は少なくなり、従ってこの超高膨張比サイクルは機関負荷が比較的低いときにしか採用できないことになる。従って本発明では機関負荷が比較的低いときには図8(B)に示す超高膨張比サイクルとし、機関高負荷運転時には図8(A)に示す通常のサイクルとするようにしている。
【0048】
次に図9を参照しつつ運転制御全般について概略的に説明する。図9には或る機関回転数における機関負荷に応じた吸入空気量、吸気弁閉弁時期、機械圧縮比、膨張比、実圧縮比およびスロットル弁17の開度の各変化が示されている。なお、図9は、触媒装置20内の三元触媒によって排気ガス中の未燃HC,COおよびNOXを同時に低減しうるように燃焼室5内における平均空燃比が空燃比センサ21の出力信号に基づいて理論空燃比にフィードバック制御されている場合を示している。
【0049】
さて、前述したように機関高負荷運転時には図8(A)に示される通常のサイクルが実行される。従って図9に示されるようにこのときには機械圧縮比は低くされるために膨張比は低く、図9において実線で示されるように吸気弁7の閉弁時期は図5において実線で示される如く早められている。また、このときには吸入空気量は多く、このときスロットル弁17の開度は全開に保持されているのでポンピング損失は零となっている。
【0050】
一方、図9において実線で示されるように機関負荷が低くなるとそれに伴って吸入空気量を減少すべく吸気弁7の閉弁時期が遅くされる。またこのときには実圧縮比がほぼ一定に保持されるように図9に示される如く機関負荷が低くなるにつれて機械圧縮比が増大され、従って機関負荷が低くなるにつれて膨張比も増大される。なお、このときにもスロットル弁17は全開状態に保持されており、従って燃焼室5内に供給される吸入空気量はスロットル弁17によらずに吸気弁7の閉弁時期を変えることによって制御されている。
【0051】
このように機関高負荷運転状態から機関負荷が低くなるときには実圧縮比がほぼ一定のもとで吸入空気量が減少するにつれて機械圧縮比が増大せしめられる。即ち、吸入空気量の減少に比例してピストン4が圧縮上死点に達したときの燃焼室5の容積が減少せしめられる。従ってピストン4が圧縮上死点に達したときの燃焼室5の容積は吸入空気量に比例して変化していることになる。なお、このとき図9に示される例では燃焼室5内の空燃比は理論空燃比となっているのでピストン4が圧縮上死点に達したときの燃焼室5の容積は燃料量に比例して変化していることになる。
【0052】
機関負荷が更に低くなると機械圧縮比は更に増大せしめられ、機関負荷がやや低負荷寄りの中負荷L1まで低下すると機械圧縮比は燃焼室5の構造上限界となる限界機械圧縮比(上限機械圧縮比)に達する。機械圧縮比が限界機械圧縮比に達すると、機械圧縮比が限界機械圧縮比に達したときの機関負荷L1よりも負荷の低い領域では機械圧縮比が限界機械圧縮比に保持される。従って低負荷側の機関中負荷運転時および機関低負荷運転時には即ち、機関低負荷運転側では機械圧縮比は最大となり、膨張比も最大となる。別の言い方をすると機関低負荷運転側では最大の膨張比が得られるように機械圧縮比が最大にされる。
【0053】
一方、図9に示される実施例では機関負荷がL1まで低下すると吸気弁7の閉弁時期が燃焼室5内に供給される吸入空気量を制御しうる限界閉弁時期となる。吸気弁7の閉弁時期が限界閉弁時期に達すると吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L1よりも負荷の低い領域では吸気弁7の閉弁時期が限界閉弁時期に保持される。
【0054】
吸気弁7の閉弁時期が限界閉弁時期に保持されるともはや吸気弁7の閉弁時期の変化によっては吸入空気量を制御することができない。図9に示される実施例ではこのとき、即ち吸気弁7の閉弁時期が限界閉弁時期に達したときの機関負荷L1よりも負荷の低い領域ではスロットル弁17によって燃焼室5内に供給される吸入空気量が制御され、機関負荷が低くなるほどスロットル弁17の開度は小さくされる。
【0055】
一方、図9において破線で示すように機関負荷が低くなるにつれて吸気弁7の閉弁時期を早めることによってもスロットル弁17によらずに吸入空気量を制御することができる。従って、図9において実線で示される場合と破線で示される場合とをいずれも包含しうるように表現すると、本発明による実施例では吸気弁7の閉弁時期は、機関負荷が低くなるにつれて、燃焼室内に供給される吸入空気量を制御しうる限界閉弁時期L1まで吸気下死点BDCから離れる方向に移動せしめられることになる。このように吸入空気量は吸気弁7の閉弁時期を図9において実線で示すように変化させても制御することができるし、破線に示すように変化させても制御することができる。
【0056】
前述したように図8(B)に示す超高膨張比サイクルでは膨張比が26とされる。この膨張比は高いほど好ましいが図7からわかるように実用上使用可能な下限実圧縮比ε=5に対しても20以上であればかなり高い理論熱効率を得ることができる。従って本実施例では膨張比が20以上となるように可変圧縮比機構Aが形成されている。
【0057】
図10は、ターボチャージャの配置を示す本内燃機関の概略全体図を示している。同図において、図1において説明した部材は同一の参照番号を付して説明を省略する。本内燃機関において、サージタンク12とエアクリーナ15との間の吸気ダクト14’には、ターボチャージャのコンプレッサ90が配置されている。
【0058】
91は吸気ダクト14’のターボチャージャのコンプレッサ90の下流側の吸気圧を過給圧として測定するための過給圧センサであり、92はターボチャージャのコンプレッサ90により過給された吸気を冷却するためのインタークーラである。
【0059】
一方、排気マニホルド19の下流側の排気ダクト93において、触媒装置20の上流側には、ターボチャージャのタービン94が配置されている。95はタービン94をバイパスするウェイストゲート通路であり、ウェイストゲート通路95にはウェイストゲート通路95を通過する排気量を制御するウェイストゲートバルブ96が配置されている。
【0060】
ウェイストゲートバルブ96の開度を大きくするほど、ウェイストゲート通路95を通過してタービン94を通過しない排気ガス量が多くなるために、タービン回転数が低下してコンプレッサ90による過給圧が低下する。
【0061】
本内燃機関は、図11に示すフローチャートに従って可変圧縮比機構Aの目標機械圧縮比Et及びウェイストゲートバルブ96の目標開度TAtが設定され、機械圧縮比とウェイストゲートバルブ96の開度とが制御されるようになっている。本フローチャートは、電子制御ユニット30により設定時間毎に繰り返して実施される。
【0062】
先ず、ステップ101において、負荷センサ41により現在の機関負荷Lを検出すると共に、クランク角度センサ42により現在の機関回転数Nを検出する。次いで、ステップ102において、現在の機関負荷L及び現在の機関回転数Nにより定まる現在の定常機関運転状態に対して、可変圧縮比機構Aの目標機械圧縮比Etが設定される。本実施形態において、図9に示すように、目標機械圧縮比Etは、現在の機関負荷Lに対してマップ化されている。こうして設定された目標機械圧縮比Etを実現するように可変圧縮比機構Aが制御される。
【0063】
次いで、ステップ103において、現在の定常機関運転状態に対して、ウェイストゲートバルブ96の目標開度TAtが設定される。目標開度TAtは、例えば、各機関運転状態において所望過給圧が実現されるように現在の機関負荷L及び現在の機関回転数Nに対してマップ化されている。例えば、機関負荷Lが高いほど所望過給圧は高く設定され、現在の機関運転状態の排気ガス圧力及び温度において所望タービン回転数を実現して所望過給圧が得られるように、目標開度TAtは現在の機関負荷L及び現在の機関回転数Nに対してマップ化されている。こうして設定された目標開度TAtを実現するようにウェイストゲートバルブ96が制御される。
【0064】
次いで、ステップ104において、気筒毎に配置されたノッキングセンサにより、少なくとも一つの気筒においてノッキングが発生しているか否かが判断される。ノッキングセンサは、ノッキング発生時の燃焼室内の音、振動、又は燃焼圧等を検出するものとすることができる。いずれの気筒においてもノッキングが発生していないときには、ステップ104の判断が否定されて、ステップ105へ進む。
【0065】
目標機械圧縮比Etを実現するために、可変圧縮比機構Aのアクチュエータ、すなわち、駆動モータ59は、その作動量が現在の目標機械圧縮比Etに対応する作動量となるように制御される。駆動モータ59の作動量(小数点以下も有する回転回数)は、特定のセンサ(図示せず)により直接的に検出するようにしても良いが、前述の相対位置センサ22により検出されるクランクケース1とシリンダブロック2との間の相対位置又は前述のカム回転角度センサ25により検出されるカムシャフト55の回転角度に基づき間接的に検出するようにしても良い。
【0066】
しかしながら、こうして可変圧縮比機構Aの駆動モータ59が制御されても、前述のセンサが駆動モータ59の作動量を正確に検出していないことがあり、現在の目標機械圧縮比Etが実現されていないことがある。
【0067】
ステップ105においては、排気マニホルド19に配置された温度センサにより現在の排気ガス温度Tが測定される。ステップ106では、測定された現在の排気ガス温度Tと、現在の機関運転状態において目標機械圧縮比Etが実現されているときの排気ガス温度T’(機関運転状態毎に予めマップ化されている)との偏差ΔTが算出される。偏差ΔTが0であれば、目標機械圧縮比Etが実現されていることとなるが、偏差ΔTが正であれば、偏差ΔTの絶対値が大きいほど実際の機械圧縮比(膨張比)は目標機械圧縮比より低くなっており、また、偏差ΔTが負であれば、偏差ΔTの絶対値が大きいほど実際の機械圧縮比(膨張比)が目標機械圧縮比より高くなっていることとなる。
【0068】
ステップ107では、偏差ΔTがほぼ0であるか否かが判断され、この判断が肯定されるときにはそのまま終了する。しかしながら、ステップ107の判断が否定されるときには、ステップ108において、可変圧縮比機構Aによって、機械圧縮比が目標機械圧縮比Etに一致するように機械圧縮比を変更する。例えば、偏差ΔTが0となるように徐々に機械圧縮比をフィードバック制御するようにしても良い。また、偏差ΔTを0とするように予め定められた変更量に基づき機械圧縮比を変更しても良い。
【0069】
一方、少なくとも一つの気筒においてノッキングが発生しているときには、ステップ104の判断が肯定され、ステップ109において、ノッキング発生気筒において、ノッキングが発生しなくなるまで点火時期を徐々に遅角する。こうしてノッキングを直ぐに抑制することはできる。しかしながら、点火時期の遅角によりノッキングが発生していた気筒の発生トルクが低下するために、機械圧縮比を低下させて点火時期を遅角させない方がノッキングを発生させずに発生トルクを高めることができる。
【0070】
それにより、ステップ111において、図12に示すマップから機械圧縮比の変更量ΔEを設定する。図12に示すマップにおいて、ノッキングが発生していた気筒の点火時期の遅角量R(複数の気筒においてノッキングが発生したときには各気筒の遅角量の最大値)が大きいほど、機械圧縮比の変更量ΔEは大きくなるようになっている。図12に示すマップは特定機関運転状態のものであり、各機関運転状態に対して、遅角量Rに対する目標機械圧縮比の変更量ΔEが図12と同様な傾向を有して設定されている。次いで、ステップ111において、現在の目標機械圧縮比Etから変更量ΔEだけ減少側に機械圧縮比Eを変更する。次いで、ステップ112において、全てのノッキングが発生していた気筒の点火時期を進角する。こうして、全てのノッキングが発生していた気筒の遅角させた点火時期は元に戻されるが、機械圧縮比Eは減少側に変更されているために、再びノッキングが発生することはない。
【0071】
しかしながら、こうして、機関運転状態が変化していないときに機械圧縮比Eを変更すると、膨張比が変更されて熱効率も変化するために、排気ガスの温度及び圧力が変化する。このときに、機関運転状態が変化していないとして、ウェイストゲートバルブ96の現在の機関運転状態に対する目標開度TAtをそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができなくなってしまう。
【0072】
本フローチャートでは、ステップ113において、図13に示すマップから目標開度TAtの補正量ΔTAを設定するようになっている。図13に示すマップにおいて、ステップ110において設定された機械圧縮比Eの変更量ΔEが大きいほど、補正量ΔTAは大きくなるようになっている。図13に示すマップは特定機関運転状態のものであり、各機関運転状態に対して、機械圧縮比の変更量ΔEに対する目標開度TAtの補正量ΔTAが図13と同様な傾向を有して設定されている。次いで、ステップ114において、ウェイストゲートバルブ96の現在の目標開度TAtは補正量ΔTAにより増加側に補正される。
【0073】
こうして、ステップ111において、機械圧縮比Eを目標機械圧縮比Etからより低く変更するほど、ウェイストゲートバルブ96の現在の機関運転状態に対する目標開度TAtをより増加側に補正するようになっている。それにより、機械圧縮比Eが低くされると膨張比も低くなって、熱効率が悪化するために、排気ガス温度及び圧力が高くなり、そのままでは過給圧が過剰に高くなってしまうが、ウェイストゲートバルブ96の開度が大きくされてタービン回転数の上昇を抑制することによりターボチャージャの過給圧を所望過給圧に制御することができる。
【0074】
このように、機関運転状態が変化していないときに機械圧縮比Eが変更されると、現在のウェイストゲートバルブ96の目標開度TAtが補正されるようになっているが、ウェイストゲートバルブ96の現在の機関運転状態に対する目標開度TAtは、現在の機関運転状態の目標機械圧縮比Etが実現されることを前提するものであるために、ステップ108において機械圧縮比Eを現在の機関運転状態の目標機械圧縮比Etへ変更する際には、機関運転状態が変化していないときに機械圧縮比Eが変更されても、ウェイストゲートバルブ96の現在の機関運転状態に対する目標開度TAtを補正しないようになっている。
【0075】
また、ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほど、ステップ113において設定される補正量ΔTAを大きくするようにしても良い。例えば、ノッキングが発生していなかった気筒数をnとすれば、ステップ113において設定された目標開度TAtの補正量ΔTAをk・n倍するようにすれば良い。それにより、ノッキングが発生していなかった気筒数が多いほど、ウェイストゲートバルブ96の現在の機関運転状態に対する目標開度TAtは、より増加側へ補正されるようになる。
【0076】
各気筒において実際の機械圧縮比がばらつくことがあり、ノッキングが発生していた気筒の実際の機械圧縮比は、ノッキングが発生していなかった気筒の実際の機械圧縮比より高くなっていたと考えられる。このときに、ノッキング発生を抑制するために全体の機械圧縮比を低下させると、ノッキングが発生していた気筒では、実際の機械圧縮比は目標機械圧縮比からそれほど低下しないが、ノッキングが発生していなかった気筒の実際の機械圧縮比は目標機械圧縮比から大きく低下して熱効率も大きく悪化するために、ノッキングが発生していなかった気筒数が多いほどウェイストゲートバルブ96の現在の機関運転状態に対する目標開度TAtをより増加側へ補正することにより、ターボチャージャの過給圧を所望過給圧に制御して過給圧が過剰に高まることを抑制することができる。
【0077】
また、ノッキング発生時には、機関運転状態が変化していないときに機械圧縮比を減少側へ変更するが、他の理由によって機関運転状態が変化していないときに機械圧縮比を増加側へ変更する場合には、機械圧縮比Eを目標機械圧縮比Etからより高く変更するほど(図13に示すマップおいてΔEは負となる)、ウェイストゲートバルブ96の現在の機関運転状態の目標開度TAtはより減少側に補正するようにする(図13に示すマップにおいてΔTAは負となる)。それにより、機械圧縮比Eが高くされると膨張比も高くなって、熱効率が向上するために、排気ガス温度及び圧力が低くなり、そのままでは過給圧が過剰に低くなってしまうが、ウェイストゲートバルブ96の開度が小さくされてタービン回転数の低下を抑制することによりターボチャージャの過給圧を所望過給圧に制御することができる。
【0078】
本フローチャートでは、ステップ105において、排気マニホルド19に配置された温度センサにより現在の排気ガス温度Tを測定し、測定された現在の排気ガス温度Tと、現在の機関運転状態において目標機械圧縮比Etが実現されているときの排気ガス温度T’との偏差ΔTに基づき、目標機械圧縮比Etが実現されているか否かを判断するようにしたが、例えば、排気マニホルド19の排気ガス圧力も、実際の機械圧縮比(膨張比)に応じて変化する値であり、現在の排気ガス圧力を測定し、測定された現在の排気ガス圧力と、現在の機関運転状態において目標機械圧縮比Etが実現されているときの排気ガス圧力(予めマップ化しておくことが好ましい)との偏差に基づき、目標機械圧縮比Etが実現されているか否かを判断し、目標機械圧縮比Etが実現されるように機械圧縮比を変更するようにしても良い。
【0079】
ところで、アクセルペダルの踏込み量がS1からS2へ変化して機関運転状態が変化する機関過渡時において、図14に実線で示すように、例えば、スロットル弁17の開度は、アクチュエータ16により、変化前の機関運転状態に対応する第一開度TA1から変化後の機関運転状態に対応する第二開度TA2へ最速で変化させられ、吸気弁7の閉弁時期も、可変バルブタイミング機構Bによって、変化前の機関運転状態に対応する第一閉弁時期IVC1から変化後の機関運転状態に対応する第二閉弁時期IVC2へ最速で変化させられ、機械圧縮比も、可変圧縮比機構Aによって、変化前の機関運転状態に対応する第一機械圧縮比E1から変化後の機関運転状態に対応する第二機械圧縮比E2へ最速で変化させられる。
【0080】
また、このように変化させられるスロットル弁17の開度、吸気弁7の閉弁時期、及び、機械圧縮比に対して、図14に実線で示すように、機関過渡時の各時刻の吸気量が推定される。こうして、各時刻の機関運転状態におけるウェイストゲートバルブ96の目標開度は、各時刻の所望の過給圧を実現するように、推定された各時刻の吸気量に対して設定される。
【0081】
しかしながら、このように、機関過渡時の各時刻において、ウェイストゲートバルブ96の開度を目標開度に制御しても、実際の機械圧縮比は、実線で示す意図したようには変化せず、応答遅れによって点線で示すように変化するために、機関過渡時の各時刻において意図する排気ガスの温度及び圧力が実現されないために、実際の過給圧は、機械圧縮比の応答遅れによって点線で示すように変化し、所望過給圧を実現することができない。
【0082】
それにより、本実施形態では、機関過渡時において、各時刻の機関運転状態におけるウェイストゲートバルブ96の目標開度は、相対位置センサ22により検出される各時刻の相対位置に基づき推定される各時刻の実際の機械圧縮比に基づき、各時刻の所望過給圧が実現されるように点線で示すように補正されるようになっている。
【0083】
具体的には、各時刻において、実際の機械圧縮比が意図した機械圧縮比より高い場合には、排気ガスの温度及び圧力は意図するより低くなるために、ウェイストゲートバルブ96の目標開度は小さくなるように補正され、各時刻の補正量は、各時刻における実際の機械圧縮比と意図した機械圧縮比との差が大きいほど大きくされる。また、各時刻において、実際の機械圧縮比が意図した機械圧縮比より低い場合には、排気ガスの温度及び圧力は意図するより高くなるために、ウェイストゲートバルブ96の目標開度は大きくなるように補正され、各時刻の補正量は、各時刻における実際の機械圧縮比と意図した機械圧縮比との差が大きいほど大きくされる。
【0084】
また、図14に点線で示す実際の機械圧縮比の変化は、相対位置センサ22により検出される各時刻の相対位置に基づき推定されたものであり、相対位置センサ22自身の応答遅れを含んでいるために、図14に一点鎖線で示すように、実際の機械圧縮比を正確に推定して、各時刻における正確な機械圧縮比の推定値と意図した機械圧縮比との差に基づき、ウェイストゲートバルブ96の目標開度を補正するようにすれば、さらに正確に所望過給圧を実現することができる。
【0085】
このように、本実施形態によれば、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機関運転状態が変化していないときに又は機関過渡時において機械圧縮比を変更する際には、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正するようになっている。機械圧縮比の変更により膨張比が変化して熱効率も変化するために、排気ガスの温度及び圧力が変化する。機関運転状態が変化していないとして、ウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができなくなってしまう。それにより、このときには、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を変更後の機械圧縮比に基づき補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することができる。
【0086】
また、機関過渡時において機械圧縮比を変更する際には、機械圧縮比の応答遅れによって、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができなくなってしまう。それにより、このときには、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度を実際の機械圧縮比に基づき補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することができる。
【符号の説明】
【0087】
90 ターボチャージャのコンプレッサ
91 過給圧センサ
94 ターボチャージャのタービン
95 ウェイストゲート通路
96 ウェイストゲートバルブ
A 可変圧縮比機構
B 可変バルブタイミング機構
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
【図8】
【図9】
【図10】
【図11】
【図12】
【図13】
【図14】

【手続補正書】
【提出日】20150825
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0010
【補正方法】変更
【補正の内容】
【0010】
本発明による請求項1に記載の可変圧縮比機構を備える内燃機関は、ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機械圧縮比を減少側に変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を増加側に補正することを特徴とする。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0012
【補正方法】変更
【補正の内容】
【0012】
本発明による請求項3に記載の可変圧縮比機構を備える内燃機関は、請求項1に記載の可変圧縮比機構を備える内燃機関において、ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほど前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度をより増加側へ補正することを特徴する。
本発明による請求項4に記載の可変圧縮比機構を備える内燃機関は、請求項1に記載の可変圧縮比機構を備える内燃機関において、機械圧縮比を増加側に変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を減少側に補正することを特徴とする。
【手続補正3】
【補正対象書類名】明細書
【補正対象項目名】0013
【補正方法】変更
【補正の内容】
【0013】
本発明による請求項1に記載の可変圧縮比機構を備える内燃機関によれば、ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機械圧縮比を減少側に変更する際には、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を増加側に補正するようになっている。機械圧縮比の減少側への変更により膨張比が変化して熱効率も変化するために、排気ガスの温度及び圧力が変化する。機関運転状態が変化していないとして、ウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができなくなってしまう。それにより、このときには、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を増加側に補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することが可能となる。
【手続補正4】
【補正対象書類名】明細書
【補正対象項目名】0014
【補正方法】変更
【補正の内容】
【0014】
また、機関過渡時において機械圧縮比を減少側へ変更する際には、機械圧縮比の応答遅れによって、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができないことがある。それにより、このときには、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度を増加側に補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することが可能となる。
【手続補正5】
【補正対象書類名】明細書
【補正対象項目名】0016
【補正方法】変更
【補正の内容】
【0016】
本発明による請求項3に記載の可変圧縮比機構を備える内燃機関によれば、請求項1に記載の可変圧縮比機構を備える内燃機関において、ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほどウェイストゲートバルブの現在の機関運転状態の目標開度をより増加側へ補正するようになっている。ノッキングが発生していた気筒の実際の機械圧縮比は、ノッキングが発生していなかった気筒の実際の機械圧縮比より高く、ノッキング発生を抑制するために全体の機械圧縮比を低下させると、ノッキングが発生していなかった気筒の実際の機械圧縮比は大きく低下して熱効率も大きく悪化し、排気ガス温度及び圧力が高くなるために、ノッキングが発生していなかった気筒数が多いほどウェイストゲートバルブの現在の機関運転状態に対する目標開度をより増加側へ補正することにより、ターボチャージャの過給圧を所望過給圧に制御して過給圧が過剰に高まらないようにしている。
本発明による請求項4に記載の可変圧縮比機構を備える内燃機関によれば、請求項1に記載の可変圧縮比機構を備える内燃機関において、機械圧縮比を増加側に変更する際には、ウェイストゲートバルブの現在の機関運転状態に対する目標開度を減少側に補正するようになっている。機関過渡時において機械圧縮比を増加側へ変更する際には、機械圧縮比の応答遅れによって、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度をそのままにすると、ターボチャージャの過給圧を所望過給圧に制御することができないことがある。それにより、このときには、刻々変化するウェイストゲートバルブの現在の機関運転状態に対する目標開度を減少側に補正するようになっており、ターボチャージャの過給圧を所望過給圧に制御することが可能となる。
【手続補正6】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
ターボチャージャを具備し、ウェイストゲートバルブの開度を機関運転状態毎の目標開度に制御し、機械圧縮比を減少側に変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を増加側に補正することを特徴とする可変圧縮比機構を備える内燃機関。
【請求項2】
機関運転状態が変化していないときに機械圧縮比を現在の機関運転状態に対する目標機械圧縮比へ変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を補正しないことを特徴とする請求項1に記載の可変圧縮比機構を備える内燃機関。
【請求項3】
ノッキング発生を抑制するために機関運転状態が変化していないときに機械圧縮比を減少側に変更する際には、ノッキングが発生していなかった気筒数が多いほど前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度をより増加側へ補正することを特徴とする請求項1に記載の可変圧縮比機構を備える内燃機関。
【請求項4】
機械圧縮比を増加側に変更する際には、前記ウェイストゲートバルブの現在の機関運転状態に対する目標開度を減少側に補正することを特徴とする請求項1に記載の可変圧縮比機構を備える内燃機関。
【国際調査報告】