(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO2014061135
(43)【国際公開日】20140424
【発行日】20160905
(54)【発明の名称】気密性診断装置および気密性診断方法
(51)【国際特許分類】
   F02M 25/08 20060101AFI20160808BHJP
【FI】
   !F02M25/08 Z
【審査請求】有
【予備審査請求】未請求
【全頁数】23
【出願番号】2014541879
(21)【国際出願番号】JP2012076961
(22)【国際出願日】20121018
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IS,JP,KE,KG,KM,KN,KP,KR,KZ,LA,LC,LK,LR,LS,LT,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC
(71)【出願人】
【識別番号】000006013
【氏名又は名称】三菱電機株式会社
【住所又は居所】東京都千代田区丸の内二丁目7番3号
(74)【代理人】
【識別番号】100123434
【弁理士】
【氏名又は名称】田澤 英昭
(74)【代理人】
【識別番号】100101133
【弁理士】
【氏名又は名称】濱田 初音
(74)【代理人】
【識別番号】100173934
【弁理士】
【氏名又は名称】久米 輝代
(74)【代理人】
【識別番号】100156351
【弁理士】
【氏名又は名称】河村 秀央
(72)【発明者】
【氏名】中川 聡
【住所又は居所】東京都千代田区丸の内二丁目7番3号 三菱電機株式会社内
【テーマコード(参考)】
3G144
【Fターム(参考)】
3G144AA10
3G144BA22
3G144BA23
3G144BA40
3G144DA04
3G144DA07
3G144EA32
3G144EA49
3G144FA02
3G144FA10
3G144FA23
3G144FA37
3G144FA39
3G144FA40
3G144GA04
3G144GA07
3G144GA24
3G144HA02
3G144HA05
3G144HA20
3G144HA21
3G144HA22
3G144HA27
3G144HA29
(57)【要約】
エアポンプ方式診断を実施する場合、ECU15がキャニスタベントソレノイドバルブ11を閉弁して配管5を大気から遮断し、エアポンプ12を駆動して配管5を目標圧力まで加圧した後、エアポンプ12を停止して逆止弁13を閉弁させ配管5を密閉した状態にして、圧力計6が測定する圧力変動に基づいて気密性を診断する。エアポンプ12の駆動を避けたい条件ではEONV方式診断を実施し、キャニスタベントソレノイドバルブ11と逆止弁13を閉弁した配管5の温度変化による自然な圧力変動に基づいて気密性を診断する。
【特許請求の範囲】
【請求項1】
燃料タンクの蒸発燃料をキャニスタで回収してエンジンへ導入する蒸発燃料処理システムの気密性を診断する気密性診断装置において、
前記蒸発燃料処理システムの内部圧力を変更するエアポンプと、
前記キャニスタと大気とを連通する配管に設置された電磁弁と、
前記エアポンプの駆動制御および前記電磁弁の開閉制御を行い、前記蒸発燃料処理システムの内部圧力を検出して気密性を診断する制御部とを備え、
前記制御部は、所定の条件を満たす場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記エアポンプを駆動して前記内部圧力を加圧または減圧した後、前記エアポンプを停止した状態で前記内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、前記所定の条件を満たさない場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施することを特徴とする気密性診断装置。
【請求項2】
前記蒸発燃料処理システムと前記エアポンプとの間に設置され、差圧に応じて開閉する逆止弁を備え、
前記第2の診断方式を実施しているときの前記蒸発燃料処理システムの内部圧力に比べて、前記逆止弁の開弁圧力、および前記内部圧力を加圧するときの前記エアポンプの吐出圧力がこの順で大きくなるよう設定されており、前記逆止弁は、前記エアポンプの吐出圧力を受けて開弁するが、前記第2の診断方式を実施しているときの前記内部圧力を受けても開弁しないことを特徴とする請求項1記載の気密性診断装置。
【請求項3】
前記蒸発燃料処理システムと前記エアポンプとの間に設置され、差圧に応じて開閉する逆止弁を備え、
前記第2の診断方式を実施しているときの前記蒸発燃料処理システムの内部圧力に比べて、前記逆止弁の開弁圧力、および前記内部圧力を減圧するときの前記エアポンプの吸込圧力がこの順で大きくなるよう設定されており、前記逆止弁は、前記エアポンプの吸込圧力を受けて開弁するが、前記第2の診断方式を実施しているときの前記内部圧力を受けても開弁しないことを特徴とする請求項1記載の気密性診断装置。
【請求項4】
前記制御部は、前記所定の条件として前記蒸発処理システムの蒸発燃料ガス濃度を用い、当該蒸発燃料ガス濃度に応じて前記第1の診断方式と前記第2の診断方式とを切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項5】
前記制御部は、前記所定の条件として前記エアポンプを駆動するモータの負荷を用い、当該負荷に応じて前記第1の診断方式と前記第2の診断方式とを切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項6】
前記制御部は、前記所定の条件として前記蒸発燃料処理システムの内部温度を用い、当該内部温度に応じて前記第1の診断方式と前記第2の診断方式とを切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項7】
前記制御部は、前記第1の診断方式において前記エアポンプを駆動して前記蒸発燃料処理システムの内部圧力を加圧または減圧するとき、所定時間内に前記内部圧力が目標圧力に到達しない場合に前記第2の診断方式に切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項8】
燃料タンクの蒸発燃料をキャニスタで回収してエンジンへ導入する蒸発燃料処理システムの気密性を診断する気密性診断方法において、
所定の条件を満たす場合、前記キャニスタと大気とを連通する配管に設置された電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態にし、エアポンプを駆動して前記蒸発燃料処理システムの内部圧力を加圧または減圧した後、前記エアポンプを停止した状態で前記内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、前記所定の条件を満たさない場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施することを特徴とする気密性診断方法。
【発明の詳細な説明】
【技術分野】
【0001】
この発明は、蒸発燃料処理システムの気密性を診断する気密性診断装置および気密性診断方法に関する。
【背景技術】
【0002】
現在、車両における蒸発燃料の配管漏れを診断する方法として、配管を密閉し、その配管内に圧力(正圧または負圧)を印加したときの圧力変動をモニタすることによって、配管漏れの有無を診断する方法が主流となっている。さらにその中で、圧力印加方法の違いにより、エンジン負圧方式、EONV(Engine Off Natural Vaccum)方式、および、エアポンプ方式の3種類に大別される。
【0003】
まず、エンジン負圧方式は、エンジン負圧により配管内を減圧した後、配管を密閉し、圧力変動をモニタすることで配管漏れの有無を診断する方法である。この方法の場合、システムを構成する部品が少なく、安価にシステムを構成することができる一方、エンジン駆動時にしか診断できないため、診断できる安定した状態となるタイミングが限られてしまう。
【0004】
EONV方式は、エンジン停止(停車)後の燃料温度変化に伴う配管圧力の変動をモニタすることで配管漏れの有無を診断する方法であり、エンジン負圧方式同様、システム構成部品が少ないため、安価にシステムを構成することができる。ただし、エンジン廃熱による燃料加熱と自然放熱による燃料冷却とを利用しているため、診断に時間がかかり、結果として、診断時の消費電力が多くなってしまう。
【0005】
さらに、エンジン負圧方式とEONV方式は、エンジン駆動を前提としており、プラグインハイブリッド車のようにエンジン駆動自体が少ない車両では、診断が実施できなくなってしまう。
【0006】
最後に、エアポンプ方式(例えば、特許文献1〜3参照)は、配管を密閉後、エアポンプを駆動して配管に圧力を印加し、漏れ診断を行う。圧力印加時(エアポンプ駆動中)の圧力勾配をモニタすることにより漏れを診断する方法(高精度なエアポンプが必要となる)と、基準オリフィスの負荷と配管の負荷との比較により漏れを診断する方法(高精度なオリフィスが必要となる)の2通りがある。さらに、負荷の判別には、エアポンプ駆動用モータの電流値を利用するものと、圧力センサを利用するものの2種類がある。
【0007】
エアポンプ方式は、エンジンに依存しないため、エンジン駆動状態に係わらず、必要な時に漏れ診断を実施することができる一方、精密な構成部品が必要であるため、部品自体が高価となってしまう。また、蒸発燃料がエアポンプ駆動用モータに流入する懸念があるため、防爆仕様のモータを用いる等の対策を行うとコスト増加につながる。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2000−186633号公報
【特許文献2】国際公開第2005/1273号パンフレット
【特許文献3】特開2005−98125号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
上述のように、エンジン負圧方式とEONV方式はエンジン駆動状態によっては診断を実施できないという課題があった。他方、エアポンプ方式は高精度なエアポンプ等が必要となり、コストが増加するという課題があった。
【0010】
この発明は、上記のような課題を解決するためになされたもので、エンジン駆動状態に影響を受けることなく、安価に蒸発燃料処理システムの気密性を診断できる気密性診断装置および気密性診断方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
この発明の気密性診断装置は、蒸発燃料処理システムの内部圧力を変更するエアポンプと、キャニスタと大気とを連通する配管に設置された電磁弁と、エアポンプの駆動制御および電磁弁の開閉制御を行い、蒸発燃料処理システムの内部圧力を検出して気密性を診断する制御部とを備え、制御部は、所定の条件を満たす場合、電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態でエアポンプを駆動して内部圧力を加圧または減圧した後、エアポンプを停止した状態で内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、所定の条件を満たさない場合、電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態で内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施するようにしたものである。
【0012】
この発明の気密性診断方法は、所定の条件を満たす場合、キャニスタと大気とを連通する配管に設置された電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態にし、エアポンプを駆動して蒸発燃料処理システムの内部圧力を加圧または減圧した後、エアポンプを停止した状態で内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、所定の条件を満たさない場合、電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態で内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施するものである。
【発明の効果】
【0013】
この発明によれば、エアポンプを使用する第1の診断方式をメインに実施することにより、エンジン駆動状態に影響を受ける第2の診断方式(エンジン負圧方式またはENOV方式)の実施を低減でき、エンジン駆動状態に影響を受けることなく気密性の診断を行うことができる。また、第1の診断方式において、従来のような加圧中または減圧中の内部圧力の変動ではなく、加圧または減圧した後の内部圧力の変動に基づいて気密性の診断を行うので、高精度なエアポンプ等の部品が不要になり、気密性診断装置を安価に構成できる。
【図面の簡単な説明】
【0014】
【図1】この発明の実施の形態1に係る気密性診断装置を適用した蒸発燃料処理システムの構成を示す図である。
【図2】実施の形態1の蒸発燃料処理システムのEONV方式診断時の状態を示す図である。
【図3】実施の形態1に係る気密性診断装置のEONV方式診断圧力と逆止弁の開弁圧力との関係を示すグラフである。
【図4】実施の形態1の蒸発燃料処理システムのエアポンプ方式診断時の状態を示す図である。
【図5】エアポンプ方式診断時に過剰圧力が発生した場合の気密性診断装置の状態を示す図である。
【図6A】実施の形態1に係る気密性診断装置の動作を示すフローチャートである。
【図6B】図6Aのフローチャートの続きを示す。
【図7】実施の形態1に係る気密性診断装置がエアポンプ方式診断に用いる圧力曲線のグラフである。
【図8】実施の形態1に係る気密性診断装置の変形例を示す図である。
【発明を実施するための形態】
【0015】
以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1に示す蒸発燃料処理システムは、燃料タンク1と、燃料タンク1で蒸発した燃料を吸着し一時的に溜めるキャニスタ2と、キャニスタ2に回収した蒸発燃料をエンジンへ導入するインレットマニホールド3と、蒸発燃料の流量を制御するNC(Normally Close)型のパージソレノイドバルブ4と、燃料タンク1からキャニスタ2を介してパージソレノイドバルブ4まで連通する配管5とから構成される。
【0016】
図1において、気密性診断装置10は、蒸発燃料処理システムにおける蒸発燃料の漏れを検出するために使用される製品であり、エンジンの駆動状態によらず診断回数を確保するために、エアポンプ方式の診断(第1の診断方式)を主とし、診断用の部品構成を工夫することで、EONV方式の診断(第2の診断方式)も実施できるように構成する。
【0017】
この気密性診断装置10を構成する診断用部品は、NO(Normally Open)型のキャニスタベントソレノイドバルブ(電磁弁)11と、エアポンプ12と、逆止弁13とから構成されている。また、部品配管14の一端がキャニスタ2側の配管5へ接続され、もう一端は大気側へフィルタ(不図示)を介して開放されている。漏れ診断を実施する範囲は、燃料タンク1と、キャニスタ2と、これら燃料タンク1からキャニスタ2を通ってパージソレノイドバルブ4までを接続した配管5とで構成される空間である。
【0018】
キャニスタベントソレノイドバルブ11は、ばね等の付勢部材によって弁体を閉弁方向へ付勢し、ソレノイドコイルに電流を流すことで弁体を付勢部材の閉弁力に抗して開弁方向に駆動して、キャニスタ2と大気側とを連通する。エアポンプ12は、モータの駆動によって大気を圧縮し、逆止弁13を介して配管5へ吐出し、配管5を加圧する。逆止弁13は、キャニスタ2とエアポンプ12との間に設置され、キャニスタ2側とエアポンプ12側との差圧に応じて開閉する。
【0019】
ECU(Electronic Control Unit;制御部)15は、キャニスタベントソレノイドバルブ11の開閉制御、およびエアポンプ12の駆動制御を行うと共に、圧力計6が測定する配管5内の圧力、および温度計7が測定する配管5内の温度などに基づいて、配管5の気密性を診断する。なお、図1では圧力計6と温度計7を燃料タンク1に設置しているが、これに限定されるものではなく、漏れ診断の対象となる配管5の温度および圧力が測定できる場所であればよい。
【0020】
安価な構成で、エアポンプ方式の診断とEONV方式の診断とを実施するために、エアポンプ12の吐出圧力と、逆止弁13の開弁圧力と、EONV方式の診断圧力との関係は、下式(1)の関係になっている。
【0021】
|エアポンプの吐出圧力|>|キャニスタベントソレノイドバルブの開弁圧力|
>|エアポンプ方式診断圧力|>逆止弁の開弁圧力|>|EONV方式診断圧力|・・・(1)
【0022】
上式(1)において、EONV方式の診断圧力とは、パージソレノイドバルブ4およびキャニスタベントソレノイドバルブ11を閉弁して配管5を密閉した状態における、配管5の内部温度の変化に応じた自然な圧力変動の値を指す。エアポンプ方式の診断圧力とは、配管5の漏れ有無が診断可能になる配管内圧力の目標値であり、パージソレノイドバルブ4およびキャニスタベントソレノイドバルブ11を閉弁して配管5を密閉した状態で、エアポンプ12を駆動して、配管5の内部圧力がエアポンプ方式診断圧力に達するまで加圧することになる。
【0023】
上式(1)において、エアポンプ12の故障、圧力計6の故障などにより配管5が過剰な圧力となった場合に、キャニスタベントソレノイドバルブ11が開弁して配管内圧力を開放するように、キャニスタベントソレノイドバルブ11の閉弁力を、所定の異常圧力時に開弁する程度に設定している。
【0024】
なお、上式(1)において、エアポンプ12の故障等を考慮しない場合には、少なくとも下式(1A)の関係を設定することによって、エアポンプ方式診断、EONV方式診断それぞれにおいて逆止弁13が配管5を密閉し、内部圧力の変動に基づく気密性診断を実施可能となる。
|エアポンプの吐出圧力|>|逆止弁の開弁圧力|>|EONV方式診断圧力|・・・(1A)
【0025】
また、エアポンプ方式診断圧力は、必ずしも逆止弁13の開弁圧力より大きく設定する必要はなく、逆止弁13の開弁圧力より低い値(例えば、EONV方式診断圧力と同程度)に設定してもよい。エアポンプ方式診断で配管5を加圧する場合、エアポンプ12の吐出圧で逆止弁13が開弁し、配管5に空気を送り込むことができれば、空気を送り込んだ分だけ、配管5の内部圧力を任意に加圧できるためである。
【0026】
図2は、蒸発燃料処理システムのEONV方式診断時の状態を示す図である。EVNO方式の診断時、エンジンは停止、パージソレノイドバルブ4は閉弁している。また、気密性診断装置10において、ECU15の制御によりキャニスタベントソレノイドバルブ11を閉弁する。
【0027】
図3は、EONV方式診断圧力と逆止弁13の開弁圧力との関係を示すグラフである。グラフ横軸は時間、縦軸は圧力を示す。破線で示す逆止弁13の開弁圧力、即ち、逆止弁13の前後の配管5,14の差圧は、EONV方式診断圧力より高く設定されているので(上式(1)より)、EONV方式の診断時において配管5の配管内圧力が温度変化に応じて自然に変動している最中には逆止弁13は開弁しない。従って、EONV方式の診断を実施する場合、図2に太線で示す配管系統が密閉状態になり、エンジン廃熱による燃料加熱と自然放熱による燃料冷却とに応じた配管内圧力の変動に基づいて気密性を診断可能となる。
【0028】
図4は、蒸発燃料処理システムのエアポンプ方式診断時の状態を示す図である。エアポンプ方式診断を行う際、蒸発燃料処理システムにおいてパージソレノイドバルブ4は閉弁している。また、気密性診断装置10において、ECU15の制御によりキャニスタベントソレノイドバルブ11を閉弁する。また、ECU15の制御によりエアポンプ12が駆動し、エアポンプ12の吐出圧力により逆止弁13が開弁し(上式(1)より)、配管5をエアポンプ方式診断圧力まで加圧する。従って、エアポンプ方式の診断を実施する場合、図4に太線で示す配管系統が密閉状態になり、エアポンプ方式診断圧力から降下していく配管内圧力に基づいて気密性を診断可能となる。
【0029】
図5は、蒸発燃料処理システムのエアポンプ方式診断時に過剰圧力が発生した場合の気密性診断装置10の状態を示す図である。エアポンプ12の故障、または圧力計7の故障等により、配管5の圧力が異常に上昇した場合、キャニスタベントソレノイドバルブ11が開弁し、圧力を開放する。
【0030】
次に、図6Aおよび図6Bのフローチャートを参照しながら、気密性診断装置10の動作を説明する。
蒸発燃料処理システムの気密性診断を実施する場合、先ず、ECU15が所定の条件を満たすか否か(ステップST1〜ST5)を判断し、所定の条件を満たす場合にエアポンプ方式の診断を実施し、所定の条件を満たさない場合にEONV方式の診断を実施する。図6Aおよび図6Bの例では、通常の雰囲気環境下においては、エアポンプ12により圧力を印加し、気密性診断を実施し、短時間で配管漏れの有無を判定する。一方、エアポンプ12を駆動するモータの寿命に影響が大きい高温(多湿)環境および低温(低湿)環境では、エアポンプ方式の診断を実施せず(即ち、モータを使用せず)、その代わりにEONV方式の診断を実施することで、気密性診断装置10の寿命を延ばす。さらに、蒸発燃料の引火懸念のある状況下でも、EONV方式の診断を実施することにより、安全に気密性を診断する。なお、診断に先立ちパージソレノイドバルブ4は閉弁状態になっているものとする。
【0031】
ECU15は、車両側から走行状態およびパージソレノイドバルブ4の開度などの情報を取得して配管5の蒸発燃料のガス濃度を推定すると共に、温度計7から配管内温度Tを取得する(ステップST1)。続いてECU15は、エアポンプ方式の診断を実施する条件として、配管内温度Tが所定の温度範囲T℃〜T℃内か(ステップST2)、および、蒸発燃料のガス濃度が所定の濃度以下か(ステップST3)を確認する。温度範囲T℃〜T℃としては、エアポンプ12のモータ寿命に影響が少ない温度範囲を設定することが望ましい。また、蒸発燃料のガス濃度としては、例えばガソリンへの引火が懸念されるガス濃度(例えば1%)を設定することが望ましい。
【0032】
エアポンプ方式の診断条件を満たす場合(ステップST2“YES”かつステップST3“YES”)、ECU15は、続いてエアポンプ12の異常(内部結露、凍結など)、およびエアポンプ12を駆動するモータの故障(短絡など)の有無を確認するために、エアポンプ12のみを駆動し(ステップST4)、モータの電流値(負荷)が所定値以下か確認する(ステップST5)。
【0033】
一方、エアポンプ方式の診断条件を満たさない場合(ステップST2“NO”またはステップST3“NO”)、ECU15はエアポンプ方式の診断を中止し、EONV方式の診断を実施する(ステップST7〜ST9)。また、モータの電流値が異常な場合も(ステップST5“NO”)、ECU15はエアポンプ12を停止した上で(ステップST6)、EONV方式の診断を実施する(ステップST7〜ST9)。
【0034】
エアポンプ方式とEONV方式を切り替える所定の条件として、上述したような配管5の蒸発燃料ガス濃度、配管5の内部温度、およびエアポンプ12を駆動するモータの負荷の他、湿度、ダスト濃度などの条件を使用してもよい。
【0035】
EONV方式の診断を実施する場合、ECU15はキャニスタベントソレノイドバルブ11を閉弁して配管5を大気から遮断し(ステップST7)、圧力計6から配管内圧力Pを取得して、エンジン停止(停車)後の燃料温度変化に伴う配管内圧力P(即ち、EONV方式診断圧力)の変動幅が所定の変動範囲内か否かを診断する(ステップST8)。ECU15は、配管内圧力Pの変動が温度変動と連動して変動している場合(ステップST9“OK”)、配管5から漏れ無しと判断する。一方、配管5に穴が開く等して漏れが生じていれば、配管5が大気と連通していることになり、温度変動に伴う配管内圧力Pの変動は生じない。従って、ECU15は、配管内圧力Pの変動が無い場合(ステップST9“NG”)、配管5から漏れ有りと判断する。
【0036】
ここで、図7に、エアポンプ方式診断に用いる圧力曲線のグラフを示す。グラフ横軸は時間、縦軸は配管5の内部圧力を示す。以下、図7を参照しながら、エアポンプ方式の診断方法を説明する。
【0037】
エアポンプ方式の診断を実施する場合、ECU15は、先ず配管5を密閉するために、キャニスタベントソレノイドバルブ11を閉弁する(ステップST10)。閉弁後、ECU15は、圧力計6の測定する配管内圧力Pがエアポンプ方式診断圧力に達するまでエアポンプ12を駆動させる。図7に実線で示すように、キャニスタベントソレノイドバルブ11の閉弁から所定時間内に、配管内圧力Pがエアポンプ方式診断圧力に到達した場合(ステップST11“YES”)、ECU15はエアポンプ12を停止させる(ステップST17)。また、配管内圧力Pが所定時間内にエアポンプ方式診断圧力に到達しない場合も(ステップST11“NO”)、ECU15がエアポンプ12を停止させる(ステップST12)。
【0038】
配管内圧力Pが所定時間内にエアポンプ方式診断圧力に到達しなかった場合(ステップST11“NO”)、ECU15はエアポンプ12を停止した後(ステップST12)、一旦キャニスタベントソレノイドバルブ11を開弁して配管内圧力Pを大気圧まで戻し(ステップST13)、ステップST7〜ST9と同様にEONV方式の診断を実施する(ステップST14〜ST16)。ECU15は、配管内圧力Pの変動が所定の変動範囲内におさまっている場合(ステップST16“OK”)、エアポンプ12が故障していると判断する。一方、配管内圧力Pの変動が無い場合(ステップST16“NG”)、ECU15は配管5に大穴漏れが発生していると判断する。
【0039】
配管内圧力Pが所定時間内にエアポンプ方式診断圧力に到達した場合(ステップST11“YES”)、ECU15はエアポンプ12を停止させる(ステップST17)。エアポンプ12の停止と同時に、エアポンプ12に直列に接続されている逆止弁13が作動し、配管5を密閉して配管内圧力Pを保持する。エアポンプ12を停止した後の配管内圧力Pは、配管5の漏れ量と配管内温度Tに依存して変動する。そこで、エアポンプ方式診断では、圧力計7が実測した配管内圧力Pを判定基準1,2上限(図7に二点鎖線で示す)と比較することで、配管5の漏れの有無を判断する(ステップST18〜ST33)。判定基準1(図7に一点鎖線で示す)として、「配管内容積」と「配管内圧力から算出した漏れ量」とから算出した「配管内圧力」を、「配管内温度変動」で補正した曲線を使用する。また、判定基準2(図7に一点鎖線で示す)として、漏れが無い場合の「配管内圧力」を「配管内温度変動」で補正した曲線を使用する。さらに、実測値誤差および外乱等を考慮して、判定基準1,2に所定の余裕を持たせた判定基準1,2上限を算出し、実測圧力が判定基準1,2からある程度乖離した場合に漏れ有りまたは温度計7等の故障有り(診断中止)と判定する。なお、所定の余裕は、配管内温度および配管内圧力等に応じて可変にしてもよいし、一定であってもよい。
【0040】
なお、所定時間内に、エアポンプ12の故障等によって配管内圧力Pがエアポンプ方式診断圧力を超えて過剰に上昇し、キャニスタベントソレノイドバルブ11の開弁圧力に達した場合、上式(1)の設定により、キャニスタベントソレノイドバルブ11が開弁して配管内圧力Pを低下させる。
【0041】
エアポンプ方式の診断を実施する場合、ECU15は先ず、エアポンプ12の停止直後に圧力計6が測定した配管内圧力(以下、実測配管内圧力)P0を取得すると共に、エアポンプ12の停止直後に温度計7が測定した配管内温度(以下、実測配管内温度)T0を取得する(ステップST18)。続いてECU15は、配管5にφ0.5mmの基準穴が開いていると仮定した場合、かつ、実測配管内圧力P0のときの、基準漏れ量Q0を推定する(ステップST19)。なお、φ0.5mm以外の大きさの穴を想定して基準漏れ量を推定してもよい。
【0042】
ECU15は、基準漏れ量Q0と配管5の容積Vとに基づいてt秒後の基準漏れ有りの圧力降下計算値PC11を推定し(ステップST20)、t秒待機した後(ステップST21)、圧力計6から実測配管内圧力P1を、温度計7から実測配管内温度T1を取得する(ステップST22)。続いてECU15は、基準漏れ有りの圧力降下計算値PC11を実測配管内温度T0,T1の温度変動量に応じて補正し、温度補正した基準漏れ有りの圧力降下計算値PC11’を算出すると共に、実測配管内圧力P0を実測配管内温度T0,T1の温度変動量に応じて補正し、温度補正した基準漏れ無しの圧力降下計算値PC21を算出する(ステップST23)。基準漏れ有りの圧力降下計算値PC11’が判定基準1に相当し、基準漏れ無しの圧力降下計算値PC21が判定基準2に相当する。
【0043】
なお、配管5の容積Vは、燃料タンク1の容積と配管5の容積から、燃料の残量を減じた値として算出可能であり、ECU15が車両側からこれらの情報を取得して容積Vを算出すればよい。
【0044】
続いてECU15は、エアポンプ12の停止からt秒後の実測配管内圧力P1と、基準漏れ無しの判定基準2に所定の余裕を持たせた判定基準2上限とを比較する(ステップST24)。実測配管内圧力P1が判定基準2上限を超える場合(ステップST24“YES”)、温度計7の故障等が疑われるため、ECU15は診断を中止する。それ以外の場合は(ステップST24“NO”)、ステップST25へ進み漏れ有無を判断する。
【0045】
ECU15は、実測配管内圧力P1と基準漏れ有りの判定基準1に所定の余裕を持たせた判定基準1上限とを比較し、実測配管内圧力P1が判定基準1上限を下回る場合(ステップST25“YES”)、配管5からの漏れ有りと判断する。一方、実測配管内圧力P1が判定基準1上限より大きい場合(ステップST25“NO”)、ECU15は配管内圧力が正常範囲内にあると判断して、ステップST26へ進む。
【0046】
以上のステップST18〜ST25では、エアポンプ12の停止直後に実測した配管内圧力P0を用いて、エアポンプ12の停止からt秒経過した後の判定基準1,2(PC11’,PC21)を推定したが、以下のステップST26〜ST33では、t秒後の判定基準1,2(PC11’,PC21)を用いて2t秒経過した後の判定基準1,2(PC12’,PC22)を推定する。
【0047】
ECU15は、温度補正した基準漏れ有りの圧力降下計算値PC11’のときの基準穴からの基準漏れ量Q1を推定する(ステップST26)。その後、ECU15は基準漏れ量Q1と配管5の容積Vとに基づいてt秒後の基準漏れ有りの圧力降下計算値PC12を計算し(ステップST27)、t秒待機した後(ステップST28)、圧力計6から実測配管内圧力P2を、温度計7から実測配管内温度T2を取得する(ステップST29)。続いてECU15は、基準漏れ有りの圧力降下計算値PC12を実測配管内温度T1,T2の温度変動量に応じて補正し、温度補正した基準漏れ有りの圧力降下計算値PC12’を算出すると共に、基準漏れ無しの圧力降下計算値PC21を実測配管内温度T1,T2の温度変動量に応じて補正し、基準漏れ無しの圧力降下計算値PC22を算出する(ステップST30)。基準漏れ有りの圧力降下計算値PC12’が判定基準1に相当し、基準漏れ無しの圧力降下計算値PC22が判定基準2に相当する。
【0048】
続いてECU15は、エアポンプ12の停止から2t秒後の実測配管内圧力P2と、基準漏れ無しの判定基準2に所定の余裕を持たせた判定基準2上限とを比較し、実測配管内圧力P2が判定基準2上限を超える場合(ステップST31“YES”)、診断を中止する。それ以外の場合は(ステップST31“NO”)、ステップST32へ進み漏れ有無を判断する。
【0049】
ECU15は、実測配管内圧力P2と基準漏れ有りの判定基準1に所定の余裕を持たせた判定基準1上限とを比較し、実測配管内圧力P2が判定基準1上限を下回る場合(ステップST32“YES”)、配管5からの漏れ有りと判断する。一方、実測配管内圧力P2が判定基準1上限より大きい場合(ステップST32“NO”)ECU15は配管内圧力が正常範囲内にあると判断して、ステップST33へ進む。その後、ECU15は、エアポンプ12の停止直後(ステップST17)からの経過時間ttotalが所定の最大時間tmax以内であれば(ステップST33“YES”)、ステップST26〜ST32の処理を繰り返す。一方、経過時間ttotalが最大時間tmaxを超えていれば(ステップST33“NO”)、配管内圧力が正常範囲内で変動している、即ち、漏れ無しと判定する。一連の気密性診断終了後、配管内圧力を大気圧に戻すため、ECU15がキャニスタベントソレノイドバルブ11を開弁する。
【0050】
なお、漏れ有無の判断を実施した場合(ステップST25“YES”、ステップST32“YES”)、そこで診断を終了することにより、診断に要する時間を最大時間tmaxより短縮することが可能である。
また、診断を中止した場合(ステップST24“YES”、ステップST31“YES”)、時間をおいて再度ステップST1から診断を実施してもよい。
【0051】
このように、本実施の形態1のエアポンプ方式診断では、配管内圧力がエアポンプ方式診断圧力に到達した後の圧力降下の実測曲線を、基準漏れが有るときおよび基準漏れが無いときの配管内温度に連動する圧力変動の判定基準1,2上限の各曲線と比較して配管5の漏れ有無を判断するため、キャニスタベントソレノイドバルブ11、エアポンプ12、逆止弁13といった診断用部品の寸法ばらつき、経時劣化、および診断環境の変化の影響を除外できる。また、診断用部品の寸法ばらつきを許容できるため、コスト抑制が可能となる。さらに、温度変動に応じた蒸発燃料の体積変化を考慮して圧力降下計算値を温度補正しているため、判定基準1,2の推定精度を向上させることができ、また、外乱(何らかの配管5の加熱または冷却)に対しても漏れ診断の精度を確保できる。
【0052】
これに対して、従来のように、圧力印加時(エアポンプ駆動中)の配管内圧力の勾配に基づいて漏れ診断を行う場合は、エアポンプ12に高精度の流量特性が必要となり、コスト増加に繋がる。また、オリフィス等の基準穴を使用する場合は、基準穴の初期精度および耐環境性が必要となり、コスト増加に繋がる。
【0053】
以上より、実施の形態1によれば、気密性診断装置10は、蒸発燃料処理システムの内部圧力を変更するエアポンプ12と、キャニスタ2と大気とを連通する配管に設置されたキャニスタベントソレノイドバルブ11と、エアポンプ12の駆動制御およびキャニスタベントソレノイドバルブ11の開閉制御を行い、蒸発燃料処理システムの内部圧力を検出して気密性を診断するECU15とを備え、ECU15は、キャニスタベントソレノイドバルブ11を閉弁して蒸発燃料処理システムを大気から遮断した状態でエアポンプ12を駆動して内部圧力を加圧した後、エアポンプ12を停止した状態で内部圧力の変動に基づいて気密性を診断するエアポンプ方式診断、および、キャニスタベントソレノイドバルブ11を閉弁して蒸発燃料処理システムを大気から遮断した状態で、燃料温度変化に伴う内部圧力の変動に基づいて気密性を診断するEONV方式診断を切り替えて実施するように構成した。このため、エアポンプ12を使用するエアポンプ方式診断により、エンジン駆動状態に影響を受けることなく、気密性の診断を行うことができる。また、エアポンプ方式診断において蒸発燃料処理システムを加圧した後の内部圧力の変動に基づいて気密性の診断を行うため、従来のような高精度なエアポンプおよびオリフィス等の部品が不要になり、気密性診断装置10を安価に構成することができる。
【0054】
また、実施の形態1によれば、気密性診断装置10は、蒸発燃料処理システムとエアポンプ12との間に設置され差圧に応じて開閉する逆止弁13を備え、EONV方式診断圧力に比べて、逆止弁13の開弁圧力、および蒸発燃料処理システムの内部圧力を加圧するときのエアポンプ12の吐出圧力がこの順で大きくなるよう設定されており、逆止弁13は、エアポンプ12の吐出圧力を受けて開弁するが、EONV方式診断圧力を受けても開弁しないように構成した。このため、同一部品構成でエアポンプ方式とEONV方式の診断を実施できる。また、従来はエアポンプ12の吐出圧力を制御するために高精度な部品寸法が求められたが、上記の設定により、部品精度を落とすことができ、コスト抑制が可能になる。
【0055】
また、実施の形態1によれば、ECU15は、蒸発燃料処理システム内の蒸発燃料ガス濃度に応じて、エアポンプ方式診断とEONV方式診断とを切り替えるように構成した。このため、蒸発燃料への引火が懸念される状態(蒸発燃料ガス高濃度)では、エアポンプ12を使用しないEONV方式診断に切り替えることができる。また、防爆対策に要するコストを抑制できるため、気密性診断装置10を安価に構成することができる。
【0056】
また、実施の形態1によれば、ECU15は、エアポンプ12を駆動するモータの負荷に応じて、エアポンプ方式診断とEONV方式診断とを切り替えるように構成した。このため、モータの故障(短絡)時に、エアポンプ12を使用しないEONV方式診断に切り替えることができる。
【0057】
また、実施の形態1によれば、ECU15は、蒸発燃料処理システムの内部温度に応じて、エアポンプ方式診断とEONV方式診断とを切り替えるように構成した。このため、モータ寿命への影響が大きい状態(高温および低温)では、エアポンプ12を使用しないEONV方式診断に切り替えることができる。
【0058】
また、実施の形態1によれば、ECU15は、エアポンプ方式診断においてエアポンプ12を駆動して蒸発燃料処理システムの内部圧力を加圧するとき、所定時間内に内部圧力が目標圧力(エアポンプ方式診断圧力)に到達しない場合にEONV方式診断に切り替えるように構成した。このため、エアポンプ12で蒸発燃料処理システムを加圧しても内部圧力が上昇しない異常事態(ステップST11“NO”)において、エアポンプ方式診断からEONV方式に切り替えて、蒸発燃料処理システムからの漏れに起因する異常か、エアポンプ12の故障に起因する異常(内部結露、凍結など)かを判断することができる。
【0059】
なお、上記実施の形態1のエアポンプ方式診断においては、エアポンプ12を使用して配管5を加圧したが、反対にエアポンプ12を使用して配管5を減圧してもよい。図8に、蒸発燃料処理システムを減圧する場合の気密性診断装置10の構成を示す。図8において、エアポンプ12の吸込側が、逆止弁13を介して配管5に接続され、吐出側がフィルタ(不図示)を介して大気側に接続されている。また、この構成におけるエアポンプ12の吸込圧力と、逆止弁13の開弁力と、EONV方式診断圧力との関係は、下式(2)の関係にある。これにより、エアポンプ方式診断、EONV方式診断それぞれにおいて逆止弁13が配管5を密閉でき、内部圧力の変動に基づき精度良く診断できる。また、配管5の内部圧力が過剰に低下した場合にはキャニスタベントソレノイドバルブ11が開弁するので、燃料タンク1等の変形を防止できる。
【0060】
|エアポンプの吸込圧力|>|キャニスタベントソレノイドバルブの開弁圧力|>|エアポンプ方式診断圧力|>|逆止弁の開弁圧力|>|EONV方式診断圧力|・・・(2)
【0061】
なお、エアポンプ方式診断で配管5を減圧する場合、エアポンプ方式診断圧力を必ずしも逆止弁13の開弁圧力より大きく設定する必要はなく、逆止弁13の開弁圧力より低い値(例えば、EONV方式診断圧力と同程度)に設定してもよい。減圧の場合、エアポンプ12の吸込圧で逆止弁13が開弁し、配管5から空気を吸い込むことができれば、空気を吸い込んだ分だけ、配管5の内部圧力を任意に減圧できるためである。
【0062】
また、上記実施の形態1では、第2の診断方式としてEONV方式の診断を実施する例を説明したが、第2の診断方式としてエンジン負圧方式の診断を実施してもよい。その場合、図6Aおよび図6Bのフローチャートにおいて、ステップST8,ST15でエンジン負圧方式の診断を実施する。エンジン負圧方式診断では、ECU15が、キャニスタベントソレノイドバルブ11を閉弁して蒸発燃料処理システムを大気から遮断した状態で、パージソレノイドバルブ4を開いてエンジン負圧により蒸発燃料処理システムを減圧した後、パージソレノイドバルブ4を閉弁し、さらに差圧により逆止弁13が閉弁して蒸発燃料処理システムが密閉された状態において内部圧力の変動に基づいて気密性を診断する。
【0063】
また、第2の診断方式としてエンジン負圧方式の診断を実施する場合、上式(1),(2)において|EONV方式診断圧力|を|エンジン負圧方式診断圧力|に置き換える。エンジン負圧方式診断圧力とは、エンジン負圧により配管5を減圧した後でこの配管5を密閉した状態における内部圧力の変動の値を指す。
【0064】
なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
【産業上の利用可能性】
【0065】
以上のように、この発明に係る気密性診断装置は、エアポンプ方式の診断とEONV方式(またはエンジン負圧方式)の診断とを切り替えて実施するようにしたので、エンジン駆動自体が少ないプラグインハイブリット車等に搭載された蒸発燃料処理システムの気密性を診断する気密性診断装置などに用いるのに適している。
【符号の説明】
【0066】
1 燃料タンク、2 キャニスタ、3 インレットマニホールド、4 パージソレノイドバルブ、5,14 配管、6 圧力計、7 温度計、10 気密性診断装置、11 キャニスタベントソレノイドバルブ、12 エアポンプ、13 逆止弁、15 ECU。
【図1】
【図2】
【図3】
【図4】
【図5】
【図6A】
【図6B】
【図7】
【図8】

【手続補正書】
【提出日】20150109
【手続補正1】
【補正対象書類名】明細書
【補正対象項目名】0011
【補正方法】変更
【補正の内容】
【0011】
この発明の気密性診断装置は、蒸発燃料処理システムの内部圧力を変更するエアポンプと、キャニスタと大気とを連通する配管に設置された電磁弁と、エアポンプの駆動制御および電磁弁の開閉制御を行い、蒸発燃料処理システムの内部圧力を検出して気密性を診断する制御部とを備え、制御部は、所定の条件を満たす場合、パージソレノイドバルブが閉弁した状態で、電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態でエアポンプを駆動して内部圧力を加圧または減圧した後、エアポンプを停止した状態で内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、所定の条件を満たさない場合、電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態で内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施するようにしたものである。
【手続補正2】
【補正対象書類名】明細書
【補正対象項目名】0012
【補正方法】変更
【補正の内容】
【0012】
この発明の気密性診断方法は、所定の条件を満たす場合、パージソレノイドバルブが閉弁した状態で、キャニスタと大気とを連通する配管に設置された電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態にし、エアポンプを駆動して蒸発燃料処理システムの内部圧力を加圧または減圧した後、エアポンプを停止した状態で内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、所定の条件を満たさない場合、電磁弁を閉弁して蒸発燃料処理システムを大気から遮断した状態で内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施するものである。
【手続補正3】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
燃料タンクの蒸発燃料をキャニスタで回収してパージソレノイドバルブを介してエンジンへ導入する蒸発燃料処理システムの気密性を診断する気密性診断装置において、
前記蒸発燃料処理システムの内部圧力を変更するエアポンプと、
前記キャニスタと大気とを連通する配管に設置された電磁弁と、
前記エアポンプの駆動制御および前記電磁弁の開閉制御を行い、前記蒸発燃料処理システムの内部圧力を検出して気密性を診断する制御部とを備え、
前記制御部は、前記パージソレノイドバルブが閉弁した状態で、所定の条件を満たす場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記エアポンプを駆動して前記内部圧力を加圧または減圧した後、前記エアポンプを停止した状態で前記内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、前記所定の条件を満たさない場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施することを特徴とする気密性診断装置。
【請求項2】
前記蒸発燃料処理システムと前記エアポンプとの間に設置され、差圧に応じて開閉する逆止弁を備え、
前記第2の診断方式を実施しているときの前記蒸発燃料処理システムの内部圧力に比べて、前記逆止弁の開弁圧力、および前記内部圧力を加圧するときの前記エアポンプの吐出圧力がこの順で大きくなるよう設定されており、前記逆止弁は、前記エアポンプの吐出圧力を受けて開弁するが、前記第2の診断方式を実施しているときの前記内部圧力を受けても開弁しないことを特徴とする請求項1記載の気密性診断装置。
【請求項3】
前記蒸発燃料処理システムと前記エアポンプとの間に設置され、差圧に応じて開閉する逆止弁を備え、
前記第2の診断方式を実施しているときの前記蒸発燃料処理システムの内部圧力に比べて、前記逆止弁の開弁圧力、および前記内部圧力を減圧するときの前記エアポンプの吸込圧力がこの順で大きくなるよう設定されており、前記逆止弁は、前記エアポンプの吸込圧力を受けて開弁するが、前記第2の診断方式を実施しているときの前記内部圧力を受けても開弁しないことを特徴とする請求項1記載の気密性診断装置。
【請求項4】
前記制御部は、前記所定の条件として前記蒸発処理システムの蒸発燃料ガス濃度を用い、当該蒸発燃料ガス濃度に応じて前記第1の診断方式と前記第2の診断方式とを切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項5】
前記制御部は、前記所定の条件として前記エアポンプを駆動するモータの負荷を用い、当該負荷に応じて前記第1の診断方式と前記第2の診断方式とを切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項6】
前記制御部は、前記所定の条件として前記蒸発燃料処理システムの内部温度を用い、当該内部温度に応じて前記第1の診断方式と前記第2の診断方式とを切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項7】
前記制御部は、前記第1の診断方式において前記エアポンプを駆動して前記蒸発燃料処理システムの内部圧力を加圧または減圧するとき、所定時間内に前記内部圧力が目標圧力に到達しない場合に前記第2の診断方式に切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項8】
燃料タンクの蒸発燃料をキャニスタで回収してパージソレノイドバルブを介してエンジンへ導入する蒸発燃料処理システムの気密性を診断する気密性診断方法において、
前記パージソレノイドバルブが閉弁した状態で、所定の条件を満たす場合、前記キャニスタと大気とを連通する配管に設置された電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態にし、エアポンプを駆動して前記蒸発燃料処理システムの内部圧力を加圧または減圧した後、前記エアポンプを停止した状態で前記内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、前記所定の条件を満たさない場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施することを特徴とする気密性診断方法。

【手続補正書】
【提出日】20160108
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
燃料タンクの蒸発燃料をキャニスタで回収してパージソレノイドバルブを介してエンジンへ導入する蒸発燃料処理システムの気密性を診断する気密性診断装置において、
前記蒸発燃料処理システムの内部圧力を変更するエアポンプと、
前記キャニスタと大気とを連通する配管に設置された電磁弁と、
前記エアポンプの駆動制御および前記電磁弁の開閉制御を行い、前記蒸発燃料処理システムの内部圧力を検出して気密性を診断する制御部とを備え、
前記制御部は、前記パージソレノイドバルブが閉弁した状態で、所定の条件を満たす場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記エアポンプを駆動して前記内部圧力を加圧または減圧した後、前記エアポンプを停止した状態で前記内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、前記所定の条件を満たさない場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施することを特徴とする気密性診断装置。
【請求項2】
前記蒸発燃料処理システムと前記エアポンプとの間に設置され、差圧に応じて開閉する逆止弁を備え、
前記第2の診断方式を実施しているときの前記蒸発燃料処理システムの内部圧力に比べて、前記逆止弁の開弁圧力、および前記内部圧力を加圧するときの前記エアポンプの吐出圧力がこの順で大きくなるよう設定されており、前記逆止弁は、前記エアポンプの吐出圧力を受けて開弁するが、前記第2の診断方式を実施しているときの前記内部圧力を受けても開弁しないことを特徴とする請求項1記載の気密性診断装置。
【請求項3】
前記蒸発燃料処理システムと前記エアポンプとの間に設置され、差圧に応じて開閉する逆止弁を備え、
前記第2の診断方式を実施しているときの前記蒸発燃料処理システムの内部圧力に比べて、前記逆止弁の開弁圧力、および前記内部圧力を減圧するときの前記エアポンプの吸込圧力がこの順で大きくなるよう設定されており、前記逆止弁は、前記エアポンプの吸込圧力を受けて開弁するが、前記第2の診断方式を実施しているときの前記内部圧力を受けても開弁しないことを特徴とする請求項1記載の気密性診断装置。
【請求項4】
前記制御部は、前記所定の条件として前記蒸発燃料処理システムの蒸発燃料ガス濃度を用い、当該蒸発燃料ガス濃度が所定の濃度以下の場合に前記第1の診断方式で診断を実施し、所定の濃度より高い場合に前記第2の診断方式で診断を実施するよう切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項5】
前記制御部は、前記所定の条件として前記エアポンプを駆動するモータの負荷を用い、当該負荷が所定値以下の場合に前記第1の診断方式で診断を実施し、所定値より大きい場合に前記第2の診断方式で診断を実施するよう切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項6】
前記制御部は、前記所定の条件として前記蒸発燃料処理システムの内部温度を用い、当該内部温度が所定の温度範囲内の場合に前記第1の診断方式で診断を実施し、所定の温度範囲外の場合に前記第2の診断方式で診断を実施するよう切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項7】
前記制御部は、前記第1の診断方式において前記エアポンプを駆動して前記蒸発燃料処理システムの内部圧力を加圧または減圧するとき、所定時間内に前記内部圧力が目標圧力に到達しない場合に前記第2の診断方式に切り替えることを特徴とする請求項1記載の気密性診断装置。
【請求項8】
燃料タンクの蒸発燃料をキャニスタで回収してパージソレノイドバルブを介してエンジンへ導入する蒸発燃料処理システムの気密性を診断する気密性診断方法において、
前記パージソレノイドバルブが閉弁した状態で、所定の条件を満たす場合、前記キャニスタと大気とを連通する配管に設置された電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態にし、エアポンプを駆動して前記蒸発燃料処理システムの内部圧力を加圧または減圧した後、前記エアポンプを停止した状態で前記内部圧力の変動に基づいて気密性を診断する第1の診断方式を実施し、前記所定の条件を満たさない場合、前記電磁弁を閉弁して前記蒸発燃料処理システムを大気から遮断した状態で前記内部圧力の変動に基づいて気密性を診断する第2の診断方式を実施することを特徴とする気密性診断方法。
【国際調査報告】