【実施例】
【0063】
以下、実施例及び比較例に基づき本発明をさらに詳しく説明するが、本発明はこれら実施例に限定して解釈されるものではない。
【0064】
[実施例1]
(スラリーabの調製)
窒化ケイ素粉末(デンカ(株)製、商品名SN−9FWS) 73.01質量部、焼結助剤としてスピネル粉末 2.09質量部、溶媒として水 23.16質量部、分散剤として第4級アンモニウム塩(セイケム製) 1.61質量部、をボールミルにより混合し、原料スラリーのベースとなる窒化ケイ素スラリー(スラリーab)を調製した。
なお、上記ボールミルにおいては、粉砕メディアとして窒化ケイ素ボール((株)ニッカトー製、直径5mm)を用いた。
【0065】
(スラリーa1の調製及び脱泡)
上記スラリーabを90.10質量部、水溶性エポキシ樹脂(ナガセケムテックス(株)製) 9.9質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、エポキシ樹脂含有窒化ケイ素スラリー(スラリーa1)を調製した。
なお、減圧(0.6kPa)により、スラリーa1は10μm以上の気泡を含まないものとした。
【0066】
(スラリーa2の調製及び脱泡)
上記スラリーab 98.4質量部、樹脂硬化剤(トリエチレンテトラミンと2,4,6−トリス(ジメチルアミノメチル)フェノールを2:1の質量比で混合したもの) 1.6質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、樹脂硬化剤含有窒化ケイ素スラリー(スラリーa2)を調製した。
なお、減圧(0.6kPa)により、スラリーa2は10μm以上の気泡を含まないものとした。
【0067】
(スラリー注入)
スラリーa1をスラリータンク1に、スラリーa2をスラリータンク2に、それぞれ同じ体積となるように充填した後、脈動を発生させることがなく、エアーの巻き込みを発生させない、精密等速カムを搭載した株式会社タクミナ製回転容積式ダイヤフラムポンプ2台を用いてスラリータンク1及びスラリータンク2からそれぞれスラリーa1及びスラリーa2を吸引、吐出させ、スラリーa1及びスラリーa2を合流させる配管を介して、ノリタケカンパニー製インラインミキサー(商品名:スタティックミキサー)に送液した。
【0068】
インラインミキサーにて、混合してエポキシ樹脂及び樹脂硬化剤を含有する原料スラリーAとし、それと同時に、原料スラリーAをインラインミキサーの出口側に接続した伸縮性ゴム容器1(不二ラテックス製)に供給した。
【0069】
上記ダイヤフラムポンプのインバータ制御により、原料スラリーA 150mLが伸縮性ゴム容器1に供給圧力0.13MPaで供給、充填され、図2に示したように、伸縮性ゴム容器1が球状に膨張した後に、伸縮性ゴム容器結束治具(不二ラテックス製)にて結束を行った。なお、伸縮性ゴム容器1は、注入口を1つ有し、球状に伸縮可能なゴム容器である。
【0070】
(硬化)
原料スラリーAが充填された伸縮性ゴム容器1を、水温25℃の水中(比重:1.0)に一晩つるすことにより、伸縮性ゴム容器1内で、エポキシ樹脂と樹脂硬化剤とを反応させ硬化させた。このとき、充填した窒化ケイ素スラリーは変形をすることなく、球状に硬化された。
【0071】
(脱型)
伸縮性ゴム容器1の注入口を引っ張ることで、伸縮性ゴム容器1に引張り応力をかけるとともに、伸縮性ゴム容器内に空隙を拡張させ、その空隙に刃物を入れ、伸縮性ゴム容器1を破裂させ、球状に硬化した窒化ケイ素成形体1を取り出した。得られた窒化ケイ素成形体1は、直径66mmで、円周方向全体にわたって外側に突出する帯状のバリはなく、その表面は非常に平滑であった。
【0072】
(乾燥)
急速な乾燥によるクラック(球体表面と球体内部の乾燥速度差に起因する収縮応力によるクラック)の発生を抑制するために、温度25℃、相対湿度90%に制御した恒温・恒湿槽内で、球状に硬化した窒化珪素成形体1を、発泡性ウレタン樹脂の上に1週間静置し乾燥させた。
【0073】
(脱脂)
乾燥した窒化ケイ素成形体1を、大気雰囲気下で、室温から700℃まで1週間かけて昇温させ、700℃で1日保持することより、窒化ケイ素成形体1が含有する硬化樹脂成分を焼失させて脱脂を行った。
【0074】
(焼成)
脱脂した窒化ケイ素成形体1を、窒素雰囲気下1700℃、保持時間12時間で焼成した。この焼成後に球状の窒化ケイ素焼結体1を得た。
【0075】
(HIP)
さらに、窒化ケイ素焼結体1に対し、窒素ガスを圧媒として100MPaの圧力下1700℃でHIP(熱間等方圧プレス)を行った。HIP後に密度が3.2g/cm
3の緻密で表面が滑らかな直径50mmの球状の窒化ケイ素焼結体1を得た。
【0076】
(評価)
窒化ケイ素焼結体1から試験片を加工し、3点曲げ強度、ビッカース硬度、IF法により破壊靭性測定、断面のSEM(走査型電子顕微鏡)観察を行った結果、「JIS R 1669」の転がり軸受用窒化ケイ素の規格「Class1」を満たしていることを確認した。
【0077】
[実施例2]
(スラリーbbの調製)
窒化ケイ素粉末((株)デンカ製、商品名:SN−9FWS) 73.04質量部、焼結助剤として、スピネル粉末 2.19質量部及び酸化セリウム粉末(信越化学製) 0.04質量部、溶媒として水を23.15質量部、分散剤として第4級アンモニウム塩(セイケム製)を1.61質量部、をボールミルにより混合し、原料スラリーのベースとなる窒化ケイ素スラリー(スラリーbb)を調製した。
なお、上記ボールミルにおいては、粉砕メディアとして窒化ケイ素ボール(ニッカトー製、直径5mm)を用いた。
【0078】
以下、スラリーabの代わりに上記スラリーbbを用いた以外は、実施例1と同様の操作によりエポキシ樹脂含有窒化珪素スラリー(スラリーb1)及び樹脂硬化剤含有窒化珪素スラリー(スラリーb2)を調製、脱泡した。さらに、スラリーa1、a2の代わりにスラリーb1、b2を用い、スラリーb1とb2とを混合してなる原料スラリーBを用いた以外は、実施例1と同様の操作により、スラリー注入、硬化、脱型を経て、球状に硬化した窒化ケイ素成形体2を作製した。得られた窒化ケイ素成形体2は、直径が66mmで、円周方向全体にわたって外側に突出する帯状のバリはなく、その表面は非常に平滑であった。
【0079】
以下、実施例1と同様の乾燥、脱脂、焼成、HIPを経て、密度が3.2g/m
3の緻密で表面が滑らかな直径50mmの球状の窒化ケイ素焼結体2を得た。
実施例1と同様の評価をした結果、「JIS R 1669」の転がり軸受用窒化ケイ素の規格「Class1」を満たしていることが確認された。
【0080】
[実施例3]
硬化操作において、水中の代わりに60%ポリタングステン酸ナトリウム水溶液中(比重:1.9)に、原料スラリーAが充填された伸縮性ゴム容器1を一晩つるすことにより硬化させた以外は実施例1と同様に処理し、球状に硬化した窒化ケイ素成形体3を作製した。得られた窒化ケイ素成形体3は、直径が66mmで、円周方向全体にわたって外側に突出する帯状のバリはなく、その表面は非常に平滑であった。
【0081】
以下、実施例1と同様の乾燥、脱脂、焼成、HIPを経て、密度が3.2g/m
3の緻密で表面が滑らかな直径50mmの球状の窒化ケイ素焼結体3を得た。
実施例1と同様の評価をした結果、「JIS R 1669」の転がり軸受用窒化ケイ素の規格「Class1」を満たしていることが確認された。
【0082】
[実施例4]
(スラリーcbの調製)
炭化ケイ素粉末(屋久島電工製、商品名:OY−15)を69.56質量部、焼結助剤として酸化アルミニウムを5.29質量部、酸化イットリウムを0.68質量部、溶媒として、水を23.04質量部、分散剤として第4級アンモニウム塩(セイケム製) 1.40質量部、をボールミルにより混合し、原料スラリーのベースとなる炭化ケイ素スラリー(スラリーcb)を調製した。
なお、上記ボールミルにおいては、粉砕メディアとしてアルミナボール(ニッカトー製、直径5mm)を用いた。
【0083】
(スラリーc1の調製及び脱泡)
上記スラリーcb 90.41質量部、水溶性エポキシ樹脂(ナガセケムテック製) 9.59質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、水溶性エポキシ樹脂含有炭化ケイ素スラリー(スラリーc1)を調製した。
なお、減圧(0.6kPa)により、スラリーc1は10μm以上の気泡を含まないものとした。
【0084】
(スラリーc2の調製及び脱泡)
上記スラリーcb 98.53質量部、樹脂硬化剤(トリエチレンテトラミンと2,4,6−トリス(ジメチルアミノメチル)フェノールを2:1の質量比で混合したもの) 1.47質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、樹脂硬化剤含有窒化ケイ素スラリー(スラリーc2)を調製した。
なお、減圧(0.6kPa)により、スラリーc2は10μm以上の気泡を含まないものとした。
【0085】
以下スラリーa1、a2の代わりにスラリーc1、c2を用い、スラリーc1とc2とを混合してなる原料スラリーCを用いた以外は、実施例1と同様の操作により、スラリー注入、硬化、脱型を経て、球状に硬化した炭化ケイ素成形体4を作製した。得られた炭化ケイ素成形体4は、直径66mmで、円周方向全体にわたって外側に突出する帯状のバリはなく、その表面は非常に平滑であった。
【0086】
以下、実施例1と同様の乾燥、脱脂を経て、脱脂した炭化ケイ素成形体4を、アルゴンガス雰囲気下1970℃、保持時間12時間で焼成した。この焼成後に球状の炭化ケイ素焼結体4を得た。
【0087】
(HIP)
さらに、炭化ケイ素焼結体4に対し、アルゴンガスを圧媒として100MPaの圧力下1900℃でHIP(熱間等方圧プレス)を行った。HIP後に密度が3.2g/cm
3の緻密で表面が滑らかな直径50mmの球状の炭化ケイ素焼結体4を得た。
【0088】
(評価)
炭化ケイ素焼結体4から試験片を加工し、3点曲げ強度を測定した結果、試験片数20個の平均強度は720MPa断面のSEM(走査型電子顕微鏡)観察を行った結果、10μm以上のポアは観察されなかった。
【0089】
[実施例5]
(スラリーdbの調製)
酸化アルミニウム(昭和電工製、商品名:160SG) 81.87質量部、溶媒として水 17.41質量部、分散剤としてポリカルボン酸アンモニウム塩(中京油脂製) 0.72質量部、をボールミルにより混合し、原料スラリーのベースとなる酸化アルミニウムスラリー(スラリーdb)を調製した。
なお、上記ボールミルにおいては、粉砕メディアとしてアルミナボール(ニッカトー製、直径5mm)を用いた。
【0090】
(スラリーd1の調製及び脱泡)
上記スラリーdb 90.41質量部、水溶性エポキシ樹脂(ナガセケムテック製) 9.59質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、水溶性エポキシ樹脂含有酸化アルミニウムスラリー(スラリーd1)を調製した。
なお、減圧(0.6kPa)により、スラリーd1は10μm以上の気泡を含まないものとした。
【0091】
(スラリーd2の調製及び脱泡)
上記スラリーdb 98.41質量部、樹脂硬化剤(トリエチレンテトラミンと2,4,6−トリス(ジメチルアミノメチル)フェノールを2:1の質量比で混合したもの) 1.59質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、樹脂硬化剤含有酸化アルミニウムスラリー(スラリーd2)を調製した。
なお、減圧(0.6kPa)により、スラリーd2は10μm以上の気泡を含まないものとした。
【0092】
以下スラリーa1、a2の代わりにスラリーd1、d2を用い、スラリーd1とd2とを混合してなる原料スラリーDを用いた以外は、実施例1と同様の操作により、スラリー注入、硬化、脱型を経て、球状に硬化した酸化アルミニウム成形体5を作製した。得られた酸化アルミニウム成形体5は、直径が66mmで、円周方向全体にわたって外側に突出する帯状のバリはなく、その表面は非常に平滑であった。
【0093】
以下、実施例1と同様の乾燥、脱脂を経て、脱脂した酸化アルミニウム成形体5を、大気雰囲気下1400℃、保持時間12時間で焼成した。この焼成後に密度が4.0g/cm
3の緻密で表面が滑らかな直径50mmの酸化アルミニウム焼結体5を得た。
【0094】
(評価)
酸化アルミニウム焼結体5から試験片を加工し、3点曲げ強度を測定した結果、試験片数20個の平均強度は500MPa、断面のSEM(走査型電子顕微鏡)観察を行った結果、10μm以上のポアは観察されなかった。
【0095】
[実施例6]
(スラリーebの調製)
酸化ジルコニウム(東ソー製、商品名:TZ−3YE) 87.17質量部、溶媒として水を12.07質量部、分散剤としてポリカルボン酸アンモニウム塩(中京油脂製) 0.76質量部、をボールミルにより混合し、原料スラリーのベースとなる酸化ジルコニウムスラリー(スラリーeb)を調製した。
【0096】
なお、上記ボールミルにおいては、粉砕メディアとしてジルコニアボール(ニッカトー製、直径5mm)を用いた。
【0097】
(スラリーe1の調製及び脱泡)
上記スラリーeb 90.41質量部、水溶性エポキシ樹脂(ナガセケムテック製) 9.59質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、エポキシ樹脂含有酸化ジルコニウムスラリー(スラリーe1)を調製した。
【0098】
なお、減圧(0.6kPa)により、スラリーe1は10μm以上の気泡を含まないものとした。
【0099】
(スラリーe2の調製及び脱泡)
上記スラリーeb 98.41質量部、樹脂硬化剤(トリエチレンテトラミンと2,4,6−トリス(ジメチルアミノメチル)フェノールを2:1の質量比で混合したもの) 1.59質量部、を真空ポンプ搭載自転公転式ミキサーにより混合し、樹脂硬化剤含有酸化ジルコニウムスラリー(スラリーe2)を調製した。
なお、減圧(0.6kPa)により、スラリーe2は10μm以上の気泡を含まないものとした。
【0100】
以下スラリーa1、a2の代わりにスラリーe1、e2を用い、スラリーe1とe2とを混合してなる原料スラリーEを用いた以外は、実施例1と同様の操作により、スラリー注入、硬化、脱型を経て、球状に硬化した酸化ジルコニウム成形体6を作製した。得られた酸化ジルコニウム成形体6は、直径66mmで、円周方向全体にわたって外側に突出する帯状のバリはなく、その表面は非常に平滑であった。
【0101】
以下、実施例1と同様の乾燥、脱脂を経て、脱脂した酸化ジルコニウム成形体6を、大気雰囲気下1500℃、保持時間12時間で焼成した。この焼成後に密度が6.0g/cm
3の緻密で表面が滑らかな直径50mmの球状の酸化ジルコニウム焼結体6を得た。
【0102】
(評価)
酸化ジルコニウム焼結体6から試験片を加工し、3点曲げ強度を測定した結果、試験片数20個の平均強度は1000MPa、断面のSEM(走査型電子顕微鏡)観察を行った結果、10μm以上のポアは観察されなかった。
【0103】
[比較例1]
実施例1のスラリーab、スラリーa1、及びスラリーa2の調製及び脱泡を経たのち、実施例1のスラリー注入における伸縮性ゴム容器1を、型取りシリコーン(信越シリコーン製、商品名:KE−1310T及びその硬化剤(商品名:CX32−164))で作製した、注入口と注出口をそれぞれ持ち、注入口と注出口の中心で2分割された構造の、型取りシリコーン製容器に変更した。なお、型取りシリコーン製容器は、直径66mmのABS製マスターモデル球にて型取りして成形面が作製された容器である。
【0104】
実施例1と同様の操作により送液したインラインミキサーにて、混合してエポキシ樹脂及び樹脂硬化剤を含有する原料スラリーAとし、それと同時に、原料スラリーAをインラインミキサーの出口側に接続した、型取りシリコーン製容器1に供給した。
【0105】
上記ダイヤフラムポンプのインバータ制御により、原料スラリーA 150mLが型取りシリコーン製容器C1に供給、充填された後、注出口からでてきたのを確認し、注入口と注出口にあらかじめ備え付けていたボールバルブで閉栓を行った。
【0106】
(硬化)
原料スラリーAが充填された型取りシリコーン製容器を、机上に一晩放置して、原料スラリーAを硬化させた。
【0107】
(脱型)
注入口と注出口の中心で2分割された構造の、型取りシリコーン製容器を分割し、型取りシリコーン製容器内で球状に硬化した窒化ケイ素成形体C1を取り出した。
【0108】
球状に硬化した窒化ケイ素成形体C1には、注入口と注出口の中心で2分割された箇所に沿って、円周方向外側に、薄片帯状の突起物が確認された。薄片帯状の突起物は非常にもろく、指でつまむと容易に崩壊したが、成形体には帯状の跡が残った。
【0109】
また、注入口と注出口に起因する、円柱状の突起物が球状の窒化ケイ素成形体C1に形成されていた。円柱状の突起物は、鋭利な刃物を用いて、削り落としたが、その個所に円形の跡が残った。
【0110】
(乾燥)
急速な乾燥によるクラック(球体表面と球体内部の乾燥速度差に起因する収縮応力によるクラック)の発生を抑制するために、温度25℃、相対湿度90%に制御した恒温・恒湿槽内で、球状に硬化した窒化珪素成形体C1を、注入口の円形痕を下、注出口の円形痕を上にして発泡性ウレタン樹脂の上に1週間静置し乾燥させた。
【0111】
乾燥させた窒化ケイ素成形体C1には、薄片帯状の跡があり、また注入口及び注出口に起因した円形状の跡が残っていた。
【0112】
以下、実施例1と同様の脱脂を経て、脱脂された窒化ケイ素成形体C1を、窒素雰囲気下1700℃、保持時間12時間で焼成を行い、球状の窒化ケイ素焼結体C1を得た。
【0113】
焼成後の球状の窒化ケイ焼結体C1には、薄片帯状の跡が残っていた。また、注入口と注出口に起因した円形状の跡と、その個所にクラックが確認された。
【0114】
[比較例2]
実施例1のスラリーab、スラリーa1、及びスラリーa2の調製及び脱泡を経たのち、実施例1のスラリー注入における伸縮性ゴム容器1を、発泡スチロールで作製した、注入口と注出口をそれぞれ持ち、注入口と注出口の中心で2分割された構造の、発泡スチロール製容器に変更した。なお、発泡スチロール製容器は、直径66mmの球形状となる部分を切削されて作製された。
【0115】
実施例1と同様の操作により送液したインラインミキサーにて、混合してエポキシ樹脂及び樹脂硬化剤を含有する原料スラリーAとし、それと同時に、原料スラリーAをインラインミキサーの出口側に接続した発泡スチロール製容器1に供給した。
【0116】
上記ダイヤフラムポンプのインバータ制御により、原料スラリーA 150mLが発泡スチロール製容器に充填されたのち、注出口からでてきたのを確認し、注入口と注出口にあらかじめ備え付けていたボールバルブで閉栓を行った。
【0117】
(硬化)
原料スラリーAが充填された発泡スチロール製容器を、机上に一晩放置して、原料スラリーAを硬化させた。
【0118】
(脱型)
注入口と注出口の中心で2分割された構造の、発泡スチロール製容器を分割し、発泡スチロール容器内で球状に硬化した窒化ケイ素成形体C2を取り出した。
【0119】
球状に硬化した窒化ケイ素成形体C2には、注入口と注出口の中心で2分割された箇所に沿って、円周方向外側に、薄片帯状の突起物が確認された。薄片帯状の突起物は非常にもろく、指でつまむと容易に崩壊したが、成形体には帯状の跡が残った。
【0120】
また、注入口と注出口に起因する、円柱状の突起物が球状の窒化ケイ素成形体C2に形成されていた。円柱状の突起物は、鋭利な刃物を用いて、削り落としたが、その個所に円形の跡が残った。
【0121】
さらに、球状の窒化ケイ素成形体C2の表面には、発泡スチロール表面の気孔に起因した無数の微細な突起物が確認された。
【0122】
以下、比較例1と同様の乾燥を経て、乾燥させた窒化ケイ素成形体C2には、薄片帯状の跡があり、また注入口及び注出口に起因した円形状の跡が残っていた。
【0123】
さらに、球状の窒化ケイ素成形体C2の表面には、発泡スチロール表面の気孔に起因した無数の微細な突起物が確認された。
【0124】
以下、実施例1と同様の脱脂を経て、脱脂された窒化ケイ素脱脂体C2を、窒素雰囲気下1700℃、保持時間12時間で焼成を行い、球状の窒化ケイ素焼結体C2を得た。
【0125】
焼成後の球状の窒化ケイ焼結体C2には、薄片帯状の跡が残っていた。また、注入口と注出口に起因した円形状の跡と、その個所にクラックが確認された(クラックは、硬化時に形成された注出口側の円柱状の突起物が残した跡に発生していた)。乾燥で注出口側円形痕を上にしたことで、重力の影響で水分が下方に移動するために、その個所での乾燥が他の球体表面よりも早くなったことで、その部分に乾燥収縮に起因する残留応力が残り、焼成でクラックを発生させたものと考えられる。
【0126】
さらに、窒化ケイ素焼結体C2の表面には、発泡スチロール表面の気孔に起因した無数の微細な突起物が確認された。
以下、本実験はNGとして、作業を中断した。
【0127】
[比較例3]
(ラバープレス用造粒粉の作製)
実施例1と同様の操作でスラリーabを調製した。
調製したスラリーabに水を追加し、セラミックス粉末固形分が20質量%となるように濃度を調整し、スラリーf1とした。
スラリーf1を2流体ノズル方式を採用した小型スプレードライヤーで乾燥を行い、10〜50μmに粒度の分布をもつ顆粒状の窒化ケイ素造粒粉Fを作製した。
【0128】
(ラバープレス成形)
マスターモデルとして直径76.2mm(3インチ)の鋼球(SUJ2)を用い、型取りシリコーン(信越シリコーン製、商品名:KE−1310T及びその硬化剤(商品名:CX32−1649)で作製した、注入口を持ち、注入口の中心で2分割された構造の、直径76.2mm球の型取りシリコーン製容器C3に、顆粒状の窒化ケイ素造粒粉末Fを充填した。
【0129】
顆粒状の窒化ケイ素造粒粉末Fを充填した直径76.2mm球の型取りシリコーン製容器C3を、真空パック包装した後、水を圧力媒体として180MPaで冷間等圧プレス(CIP)を行った。
【0130】
CIP後に、真空パックから直径76.2mm球の型取りシリコーン製容器C3を取り出した後に分割し、CIPにより圧縮成型された直径58mmの球状のラバープレス成形体C3が得られた。
【0131】
得られたラバープレス成形体C3の表面は、乾式成形特有のザラザラした(微粉末が圧密されてできた微細な凹凸をもつ)表面を有していた。また、球体表面には、注入口に起因する円柱状の突起物、及び円周方向外側に型の分割面に沿って、帯状突起物がそれぞれ形成されていた。
【0132】
(脱脂及び一次焼成)
球状のラバープレス成形体1を、真空雰囲気下で、室温から700℃まで24時間かけて昇温させ、900℃で12時間保持することより乾燥させた窒化ケイ素成形体C3に含有する分散剤成分を焼失させる脱脂を行った。
【0133】
次いで、900℃で12時間保持した後、窒素ガスを導入し、1700℃まで8時間かけて昇温させ、1700℃で12時間、焼成を行った。焼成後に、球状の窒化ケイ素焼結体C3を得た。
【0134】
焼成後の窒化ケイ素焼結体C3は、(微粉末が圧密されてできた微細な凹凸をもつ)ザラザラした表面を持っていた。また、注入口に起因する円柱状の突起物、及び円周方向外側に帯状突起物が焼結体に形成されていた。
【0135】
(HIP)
窒化ケイ素焼結体C3を、窒素ガスを圧媒として100MPaの圧力下1700℃でHIPを行った。HIP後に密度が3.2g/cm
3で、表面に微細な凹凸を持ち、円周方向外側に帯状突起物、注入口に起因する円柱状の突起物をもつ、直径50mmの球状の窒化ケイ素焼結体C3を得た。
【0136】
[比較例4]
スラリーabの調製からスラリー注入までの一連の操作を実施例1と同様に行った。
【0137】
(硬化)
原料スラリーAが充填され、球状に膨張した伸縮性ゴム容器1を、一晩、机上に放置した。それにより、球状に膨張したゴム容器内で、樹脂と樹脂硬化剤と反応により硬化した窒化ケイ素スラリーが、重力により机上で押しつぶされる状態となり、いびつな球体に変形して硬化した。
【0138】
(脱型)
伸縮性ゴム容器1の注入口を引っ張ることで、伸縮性ゴム容器1に引張り応力をかけ、かつ、空隙を伸縮性ゴム容器1内に拡張させた状態とし、その空隙に刃物を入れ、伸縮性ゴム容器1を破裂させた。
【0139】
破裂した伸縮性ゴム容器1から、いびつな球状に硬化した窒化ケイ素成形体C4を取り出した。窒化ケイ素成形体C4は、円周方向全体にわたって外側に突出するような帯状部はなく、その表面は非常に平滑であったが、目標の球体が得られなかったため、以降の作業は中止とした。
【0140】
上記した実施例1〜6及び比較例1〜4について、得られた成形体の成形性、バリ、表面性状、について以下のように評価し、その結果を表1にまとめて示した。
[成形性]
得られた成形体形状について、以下の基準で評価した。
良:所望の形状の成形体が得られた
不良:所望の形状ではない又はクラック等が発生した
[バリ]
良:得られた成形体にバリがない
不良:得られた成形体にバリがある
[表面性状]
得られた成形体の表面について、目視及び触診により、光の反射が良好で手触りが円滑なものを「つるつる」と、光の反射が良好でない又は手触りで引っ掛かりを感じる場合を「ザラザラ」と、評価した。
【0141】
【表1】
【0142】
以上より、本発明のセラミックス材料の成形方法及びセラミックス物品の製造方法によれば、表面には外側に突出した帯状部等のバリがなく平滑な表面の成形体及び焼結体が容易に得られる。