【実施例】
【0204】
全ての実施例に関して、本明細書では以下の用語が使用される。
「トロンビン溶液」は、pH6.9〜7.1の20mM酢酸ナトリウム中、約3000IU/mlのトロンビン、約1mg/mlの総タンパク質濃度のトロンビンの溶液を指す。
【0205】
「トロンビン製剤」又は「製剤化トロンビン」は、800〜1200IU/mlの範囲のトロンビン活性、約5.7〜6.5mg/mlの総タンパク質濃度、及びpH6.9〜7.1の5.0〜6.5mg/mlのヒト血清アルブミン(HSA)を有する、製剤化トロンビン医薬品EVITHROM(登録商標)Thrombin、Topical(Human)(ETHICON,Inc.)、又はEVICEL(登録商標)Fibrin Sealant(ETHICON,Inc.)のトロンビン成分を指す。トロンビンの製剤に使用されるHSAは、安定剤であるアセチルトリプトファンを含む。
【0206】
以下の全ての実施形態では、トロンビン溶液は、存在するトロンビンが製剤化されておらず(例えば、安定剤を含まない)、また高濃縮されておらず(約3000IU/ml)、したがって、トロンビンがより速く分解する傾向にある(「トロンビン製剤」中に存在するトロンビンと比較して)ため、トロンビン分解ポリペプチドを含む「対照試料」として使用された。
【0207】
以下の実施例では、ツールは、α−トロンビン、その分解ポリペプチド、及び存在する場合、HSA間の分離を提供する、並びにα−トロンビン及びその分解ポリペプチドを定量化するそれらの能力について評価された。
【0208】
一般に、「良好な分離」とは、ピーク間の「ベースライン分離能」と考えられる。「ベースライン分離能」は、分析物の溶出の代表として検出されたピークが重複しない、分析物の十分な分離を意味する、つまり、検出器の応答がピーク間のベースラインレベルに戻る。
【0209】
「十分な分離」とは、溶出ピーク間に明確な違いが現れるが、検出器の応答がピーク間でベースラインレベルに完全に戻らない。
【0210】
不十分な分離は、ピークの重複がクロマトグラムに現れるときと考えられる。
【0211】
値で示されない限り、分離能/分離レベルは視覚的に評価された。数値が以下の実施例において列記される場合、クロマトグラフィーカラムが互いに成分を分離する程度である分離能(R
s)は、数学的に以下のように定義される:分離能は、選択されたピークとその前のピーク保持時間との間の差を1.18の定数で乗じた後、ピーク高さの50%のピーク幅の合計で除したものである。
【0212】
2又はそれ以上の分離能レベルは、「ベースライン分離能」と考えられ、したがって、良好な分離を示し、ピークの良好な定量を可能にする。1.5又はそれ以上(2未満)の分離能は、分離及び定量化を可能にする「十分な分離」と考えられる。
【0213】
クロマトグラフィー方法の有効性に関して、「分離」及び「分離能」という用語は交換可能に使用される。
【0214】
実施例1:HSA、トロンビン溶液、及び製剤化トロンビンの逆相高性能液体クロマトグラフィー(RP−HPLC)
タンパク質及びその断片を分離する標準的な手順は、逆相モードのHPLC装置を採用する。RP−HPLC方法の基本原理は、デュアルポンプ、極性カラム、及び検出器からなる装置である。タンパク質を装置に注入し、カラムに保持させる。有機溶媒の濃度を増加すると、カラムに保持されたタンパク質及びペプチドがカラムから解放され、検出器に溶出し、ここで、所与の時間で溶出したタンパク質の量に基づいて、応答が取得される。
【0215】
以下の実施例では、C4カラム(Phenomenex,Jupiter,00G−4167−B0,4.6×250mm)を備えたRP−HPLCは、α−トロンビン、その分解ポリペプチド、及び存在する場合、HSA間を分離し、α−トロンビン及びその分解ポリペプチドを定量化するためのツールとして評価された。
【0216】
HPLC分析は、100μLの注入ループを備えたWaters Alliance分離モジュールe2695を使用して実施され、フォトダイオードアレイ(PDA)検出器2998(A
190nm〜A
450nmを走査する)は、50℃の一体型Watersカラムオーブンと共に使用された。
【0217】
分離に使用された有機溶媒/溶液は、
緩衝液A:HPLCグレードの水+0.1%(v/v)トリフルオロ酢酸(TFA)、
緩衝液B:アセトニトリル+0.1%(v/v)トリフルオロ酢酸(TFA)であった。
【0218】
異なる溶液勾配(経時的な緩衝液Aと緩衝液Bの比率)が評価された。
【0219】
注入された試料は、a)30μLのトロンビン溶液、b)100μLの製剤化トロンビン、c)100μLの5mg/ml HSA、及びd)ブランク試料としての100μLのHPLCグレードの水であった。
【0220】
全ての実験において、異なる注入容量は、トロンビン溶液中のトロンビンが製剤化トロンビンと比較したとき、より濃縮されたという事実に基づいた。
【0221】
注入前に、全ての試料を、0.45μmのポリビニリデンジフルオリド(PVDF)膜(Millipore、より大きい粒子、例えば、凝集体を濾過するため)を通して濾過した。HPLCに注入するまで、試料を一体型試料コンパートメント中で、10℃で保存した。
【0222】
図1は、溶出ピークの領域の代表的なクロマトグラムの拡大図を示す。
【0223】
全ての図において、試料の描写は、クロマトグラムの開始に基づいて上から下に示され、注入された試料(上から下)は、クロマトグラム上に列記される。異なる試料の実行は、重なったオーバーレイとして1つの図に示される。
【0224】
HASとトロンビンとの主ピーク間に分離があるが、全体的に十分な分離は達成されなかった。カラムから溶出されたピークは非常に近接しているため、信頼できるピークの分離及び/又は定量はできなかった。
【0225】
温度、カラム化学(異なる試験したRPカラムは以下に列記される)、移動相化学(メタノールなど)、及び勾配を含む条件を変更した、追加の実験が実施されたが、α−トロンビン及びその分解ポリペプチド、並びに/又は他のタンパク質、例えばHSA間の分離能は改善されなかった。
【0226】
上述のように、分離及び定量化のために、以下の追加のRPカラムが試験された:C4,5μm,300A,4.6×250mm;Sepax BioC18,3μm,300A,4.6×150mm;LiChroCART,5μm,300A,4×250mm;Sepax C8,5μm,300A,4×250mm;Waters XBridge C4,3.5μm,300A,4×250mm。
【0227】
したがって、RP−HPLCは、分解ポリペプチド及び/又はHSAの存在下でのα−トロンビンの「一工程」若しくは「単一カラム分離」及び/又は定量化が所望される場合、適切なツールではないと結論付けられた。
【0228】
実施例2:陰イオン交換高性能液体クロマトグラフィー(AEX−HPLC)並びに直線塩勾配及びpH8.0を使用した溶出
タンパク質及びその断片を分離するための標準的な手順は、陰イオン交換モードのHPLC装置を採用する。AEX−HPLC方法の基本原理は、デュアルポンプ、極性カラム、及び検出器からなる装置である。タンパク質を装置に注入し、カラムに保持する。溶媒特性(例えば、塩濃度、pH)を変更すると、カラムに保持されたタンパク質及びペプチドがカラムから解放され、検出器に溶出し、ここで、所与の時間で溶出したタンパク質の量に基づいて、応答が取得される。
【0229】
この実験において、陰イオン交換カラムを使用したHPLC分析は、α−トロンビン、その分解ポリペプチド、及び存在する場合、HSA間を分離し、α−トロンビン及びその分解ポリペプチドを定量化するためのツールとして評価された。
【0230】
AEX−HPLC分析は、100μLの注入ループを備えたWaters Alliance分離モジュールe2695を使用して実施され、PDA検出器は、A
220nm及びA
280nmで使用され、一体型Watersカラムオーブンは25℃で使用された。使用されたカラムはSepax 403NP5−4625(Sepax Proteomix SAX−NP5 NP 4.6×250mm 403NP5−4625)であった。カラム(幅4.6mm及び長さ250mm)は、5μmのポリマービーズがベースである。ビーズは、四級アンモニウム化学を有し、非多孔質の単分散粒子である。
【0231】
AEX−HPLCからの溶出に関して、緩衝液A:HPLCグレードの水中20mMトリス(pH8.0)と、緩衝液B:HPLCグレードの水中20mMトリス(pH8.0)及び1M NaClとの間の直線塩勾配が使用された。
【0232】
注入された試料は、a)30μLのトロンビン溶液、b)100μLの製剤化トロンビン、c)100μLの5mg/ml HSA、及びd)ブランク試料としての100μLの緩衝液Aであった。
【0233】
注入前に、全ての試料を、孔径0.45μmのPVDF膜を有する4mm注射器フィルタを通して濾過した。HPLCに注入するまで、試料を一体型試料コンパートメント中で、10℃で保存した。実行時間は、37分であり、使用された流量は0.8mL/分であり、圧力は約18000kPa(2600psi)であった。
【0234】
図2は、溶出ピークの領域の代表的なクロマトグラムの拡大図を示す。
【0235】
結果は、pH8.0の溶出緩衝液及び1M NaClまでの直線塩勾配を用いたAEX−HPLCが十分な分離を提供せず、かつ/又は信頼できる定量化を可能にしなかったことを示す。カラムから溶出されたピークは互いに非常に近接し、分離能は十分ではなかった。
【0236】
実施例3:AEX−HPLC並びに直線塩勾配及びpH 6.0を使用した溶出
先行の実施例は、pH8.0及び直線塩勾配で、α−トロンビン、その分解ポリペプチド、及びHSA間の分離が限られたことを示した。
【0237】
この実施例では、1M NaClまでの増加勾配でpH6.0のリン酸緩衝液を使用した溶出が、実施例2において記載される、カラム、装置、及び実験設定を使用して評価された。
【0238】
AEX−HPLCからの溶出に関して、緩衝液A:HPLCグレードの水中20mMリン酸緩衝液(pH6.0)と、緩衝液B:HPLCグレードの水中20mMリン酸緩衝液(pH6.0)及び1M NaClとの間の直線塩勾配が使用された。
【0239】
注入された試料は、a)30μLのトロンビン溶液、b)100μLの製剤化トロンビン、c)100μLの5mg/ml HSA、及びd)ブランク試料としての100μLの緩衝液Aであった。
【0240】
図3は、異なる試料に関して得られた代表的なクロマトグラムを示す。
【0241】
結果は、pH6.0の溶出緩衝液及び1M NaClまでの塩勾配を用いたAEX−HPLCが十分な分離を提供せず、かつ/又は信頼できる定量化を可能にしなかったことを示す。
【0242】
クロマトグラムに見られるアセチルトリプトファンは、HSA製剤中に存在する安定剤である。
【0243】
実施例4:AEX−HPLC並びに直線塩勾配及びpH7.5を使用した溶出
先行の実施例は、pH6.0(実施例3)及び8.0(実施例2)の溶出緩衝液を用いた分離が限られたことを示したため、pH7.5の溶出緩衝液を試験した。
【0244】
HPLC分析及び条件は実施例2に記載されるように実施された。溶出は、NaClの増加直線勾配でpH7.5のトリス緩衝液を使用して実施された。使用された緩衝液は、緩衝液A:HPLCグレードの水中20mMトリス(pH7.5)及び緩衝液B:20mMトリス(pH7.5)及び1M NaClであった。
【0245】
注入された試料は、a)30μLのトロンビン溶液、b)100μLの製剤化トロンビン、c)100μLの5mg/ml HSA、及びd)ブランク試料としての100μLの緩衝液Aであった。結果を図4(拡大図)に示す。結果は、pH7.5の溶出緩衝液及び1M NaClまでの塩勾配を用いたAEX−HPLCが十分な分離を提供せず、かつ/又は信頼できる定量化を可能にしなかったことを示す。
【0246】
実施例5:AEX−HPLC並びに直線NaNO
3塩勾配及びpH8.0を使用した溶出
NaClの代替えとして、NaNO
3(硝酸ナトリウム)が、トロンビン分解ポリペプチドを、α−トロンビンから、及び溶液中の残りのタンパク質、例えば、HSAから分離するその能力に関して評価された。
【0247】
直線塩勾配は、緩衝液A:HPLCグレードの水中20mMトリス(pH8.0)と緩衝液B:20mMトリス(pH8.0)/1M NaNO
3との間で評価された。カラム、装置、及び実験設定は実施例2に記載される通りであった。
【0248】
注入された試料は、a)30μLのトロンビン溶液、b)100μLの製剤化トロンビン、及びc)100μLの5mg/ml HSAであった。結果を図5に示す。上述のように、トロンビン溶液は分解ポリペプチドを含有した。
【0249】
結果は、溶離剤としてのNaNO
3を使用することにより、HSA、アセチルトリプトファン、及びトロンビン間の分離が大幅に増加されるが、十分な分離能がトロンビンとその分解ポリペプチド間で達成されなかったことを示す。
【0250】
実施例6:AEX−HPLC及びpH9.1〜pH3.4の直線勾配を使用した溶出
AEX−HPLC樹脂から溶出した関連ピーク間の分離を達成するために塩勾配を使用する代替えとして、アミン系緩衝液を使用するpH勾配が評価された。緩衝液のアミンの性質により、検出はA
280nmで実施された。
【0251】
緩衝液A及びBは、20mMピペラジン(Sigma Aldrich,P45907)、20mMトリエタノールアミン(Sigma Aldrich,T9534)、20mMビス−トリスプロパン(Sigma Aldrich,B4679)、及び20mM 1−メチルピペラジン(Sigma Aldrich,13000〜1)を含有した。
【0252】
緩衝液は、HClで滴定することにより、pH9.1(緩衝液A)及びpH3.4(緩衝液B)に調整された。合計実行時間は46分であった。全ての実験において、直線勾配は、工程2と3との間に実行され(下の表1を参照されたい)、直線勾配の実行時間は20分であった。工程2及び3の間に、材料はカラムから溶出される。
【0253】
注入された試料は、a)30μLのトロンビン溶液、b)100μLの製剤化トロンビン、c)100μLの5mg/ml HSA、及びd)ブランク試料としての100μLの緩衝液Aであった。
【0254】
緩衝液間の流量条件及び比率を表1に示す。溶出緩衝液のpHは、緩衝液AとBとの間の比率に依存する。一般に、典型的なHPLC実行は少なくとも以下の工程からなる:
平衡化したカラムに材料を装填する(工程1と2との間の時間、「装填」)。
【0255】
この工程後、材料をカラムから溶出する(工程2と3との間、「直線勾配」)。これは、均一濃度で(装填及び/又は平衡化工程と比較したとき、緩衝液組成を変更することなく)、又は勾配(緩衝液の特性、例えば、塩濃度、極性/pHのうちの1つを変更する)を通して実施することができる。この実施例では、溶出は直線勾配を使用して実施された。
【0256】
次の工程では、カラムが再生され得る(工程3と4との間、「カラム再生」)、つまり、カラムから任意の残存材料を溶出するために、変更した特性(塩濃度、極性、pH)の最高濃度で、残存材料に追加時間を与える。
【0257】
最後の工程(工程5と6との間、「カラム平衡化」)は、カラムが追加分離に適する元の状態にカラムを戻すための平衡化工程である。
【0258】
条件、カラム、及び装置は実施例2に記載される通りであった。
【0259】
【表1】
−工程1と2との間−装填−5分。
−工程2と3との間−直線勾配−20分。緩衝液Bの増加は毎分4.5%であった。
−工程3と4との間−「カラム再生」−5分。
−工程5と6との間−「カラム平衡化」−15分。
【0260】
下の表全てにおいて、工程は同じ様式で特徴付けされ、番号付けされる。
【0261】
図6は、注入された試料の代表的なクロマトグラムを示す。図7は、図6からのクロマトグラムのトロンビン溶出領域の拡大図である。
【0262】
結果は、良好な分離能が、HSA、アセチルトリプトファン、及びトロンビン間で得られたことを示す。記載される条件で、いくつかのトロンビンピークが得られた(図6に最も良く示される)。以下の実施例では、トロンビンピークの分離能を更に強化するために、追加のパラメータが検査された。
【0263】
実施例7:AEX−HPLC及び異なる流量の直線pH勾配を使用した溶出
異なるトロンビンピーク間でより良い分離を得るために、温度(実施例2〜7と同様25℃で)及びpH勾配を一定に維持したまま、異なる流量が評価された。
【0264】
緩衝液A及びBは実施例6と同じであった。プログラム(下の表2を参照されたい)は4回操作された。各回で流量は異なった:0.25、0.5、0.75、及び1mL/分。
【0265】
評価された勾配は下の表2に示される通りである。
【0266】
注入された試料は、各試験した流量に関して、30μLのトロンビン溶液であった。
【0267】
【表2】
【0268】
図8は、実施された流量スクリーンのクロマトグラムの拡大図を示す。
【0269】
HSA、アセチルトリプトファン、及びトロンビン間の分離(目視検査)は、流量の増加による影響は受けなかった(データ示さず)。
【0270】
α−トロンビンとその分解ポリペプチドとの間の分離能が流量の増加と共に増加することが示された(図8)。最良の分離能は1.0mL/分で達成され、例えば、より多くのピークが観察された。
【0271】
実施例8:AEX−HPLC及び100%緩衝液AからのpH勾配を使用した溶出
この実施例では、分離分離能に対して、前の実施例と比較してより高いpHでAEX−HPLC方法を開始する作用が評価された。この目的のため、90%(表2に使用されるように)の代わりに、100%緩衝液A(表3を参照されたい)でのpH勾配が使用された。工程1、2、5、及び6において、緩衝液Aのパーセントが90であり、緩衝液Bのパーセントが10であったのみで、対照として、同じセットの試料が表3に記載される様式で実行された。
【0272】
緩衝液A及びBは実施例6と同じであった。特に記載されない限り、実験設定は実施例6と同じであった。
【0273】
ピーク間の分離能は視覚的に評価された。表3は勾配及び流量条件を示す。
【0274】
【表3】
−緩衝液Bの増加は毎分4.55%であった。
【0275】
結果(データ示さず)は、より高いpHで勾配を開始することにより、トロンビンピークのより良い分離能が得られたことを示した。したがって、より広いpH範囲のカラムからのタンパク質の溶出はピーク間のより良い分離をもたらす。
【0276】
以下の実施例では、100%緩衝液AのpH勾配が使用された。
【0277】
実施例9:AEX−HPLC及び勾配実行時間を増加した直線pH勾配を使用する溶出
異なるトロンビンピーク間のより良い分離/分離能を得るために、実施例6の実行時間と比較したとき、各々5分ずつ51、56、及び61分の合計実行時間(すなわち、工程2と3との間の時間が20から25、30から35分に増加した)への勾配増加(すなわち、時間増加は工程2と3との間であった)が評価された。46分の実行時間(実施例6と同様に)も試験された。分離能は各ピークからその前のピークまでの間で測定された。
【0278】
特に記載されない限り、実験設定は表3に列記されるパラメータを使用する実施例8と同じであった。
【0279】
トロンビン溶液(30μL)を注入した。緩衝液A及びBは実施例6と同じである。表4、5、6、及び7は、それぞれ、保持時間、並びに46、51、56、及び61分の合計実行時間で達成された分離能を示す。保持時間は、注入時と溶出の代表としてのピーク頂点(ピークの最も上方の点)検出との間の間隔である。
【0280】
【表4】
【0281】
【表5】
【0282】
【表6】
【0283】
【表7】
【0284】
結果は、56及び61分の合計実行時間で(30及び35分の勾配の長さ)、トロンビンピークに明確な領域で溶出する追加のピークがより短い実行時間と比較したときに分離されたことを示す。
【0285】
有利に、明確なトロンビン領域で溶出する追加のピークを得るために、25分より長い勾配の長さが使用され得る。
【0286】
次の実施例では、56分の合計実行時間が使用された。
【0287】
実施例10:分離分離能に対する直線勾配の作用
異なる直線傾き勾配は、トロンビンピークの分離を改善するそれらの能力について評価された(工程2と3との間に使用された勾配)。傾きは毎分の緩衝液Bのパーセントの増加により影響を受ける。毎分の緩衝液Bのパーセント増加が低いと、毎分の緩衝液Bのパーセント増加がより高いときと比較したとき、より浅い傾きとなり、それによりタンパク質の溶出プロファイルに影響を及ぼす。勾配が異なる出発pHを使用することにより影響を受けた実施例8とは対照的に、この実施例では、勾配は毎分異なる速度でpH値が増加することにより影響を受けた(開始点及び終了点のpHは全ての試料において等しい)。
【0288】
緩衝液A及びBは実施例6と同じであった。特に記載されない限り、実験設定は実施例6と同じであった。トロンビン溶液(30μL)を注入した。緩衝液A(30μL)はブランクとして使用された(示さず)。
【0289】
毎分の緩衝液Bのパーセント増加が評価された:4.5%、4.25%、4%、3.75%、及び3.5%。例えば、毎分4.5%のパーセントが使用されたとき、最初の1分後に毎分4.5%の緩衝液Bが得られ、2分後に毎分9%の緩衝液Bが得られ、3分後に毎分13.5%の緩衝液Bが得られるなど、毎分最大100%までの緩衝液Bが得られる。各分で、緩衝液Aは総溶液を100%にするように使用された。
【0290】
典型的には、より浅い傾きは実行時間の増加となる。実行時間は次の通りであった:列記される緩衝液Bのパーセントに対して、それぞれ、48、49.5、51、52.7、及び54.6分。
【0291】
図9は、評価された異なる勾配について得られたクロマトグラムを示し、目視検査は分離分離能を決定するために実施された。
【0292】
結果は、全ての試験した傾きがトロンビンピーク間で満足な/十分な分離を示し、3.5%の増加が最良の分離を有することを示す(拡大図に見られる、データ示さず)。
【0293】
実施例11:AEX−HPLCに市販の標準品を注入することによる異なるトロンビンピークの特定
クロマトグラムにおいてトロンビンピークを特定するために、1.0mL/分の流量を使用して、α、β、及びγトロンビン標準品に加えて、実施例7と同様にトロンビン溶液が注入された。
【0294】
標準品(Haematological Industries;Human alpha−Thrombin、HTI HCT−0020、Human beta−Thrombin、HTI−0022、Human gamma−Thrombin、HTI−0021)は、注入前に0.3mg/mLに希釈された。30μLのトロンビン溶液、α−、β−、及びγ−標準品各々100μLがHPLCに注入された。緩衝液Aはブランクとして使用された。
【0295】
緩衝液A及びBは、実施例7に記載されるのと同じであり、表2に示されるプログラムにおいて使用された。
【0296】
図10は重複したクロマトグラムを示す。標準品について得られたピークに基づき、トロンビン溶液の相関するピークを特定し、それにより、α−トロンビンとその分解ポリペプチドβ及びγトロンビンとの間の分離が達成され得ることを確認することが可能であった。加えて、α−トロンビンがクロマトグラムにおいて複数のピークとして溶出することが特記された。
【0297】
実施例12:定性的ツールとしてウエスタンブロットを使用するトロンビンピークの特定
前の実施例では、トロンビンピークの特定は、AEX−HPLCにおいて、市販のα、β、及びγトロンビン標準品の注入により実施された。
【0298】
上記の結果を裏付けるために、この実施例では、トロンビンピークは注入されたトロンビン溶液から収集され、既知のサイズのα−トロンビン及びその分解ポリペプチド、β−並びにγ−トロンビンに基づく市販の標準品(実施例11と同様)に対して、ウエスタンブロットにより更に定性的に特定された。
【0299】
十分な量のβ及びγトロンビンを得るために、HPLCに注入する前に、一晩など、室温で(約20〜25℃)少なくとも12時間、トロンビンの自己分解を強化する条件下で、トロンビン溶液をインキュベートした。実験設定は実施例10と同様であり、3.5%B/分の増加が使用された。60μLの試料(四つ組で)及び100μLの緩衝液Aが注入された。
【0300】
明確なピーク(図11及び表8に示され、特定される)が4つの別個の実行から収集され(各ピークに存在するタンパク質量が少ないため)、プールされ(視覚的特定及び保持時間に従い)、回収量が大きいため凍結乾燥された。各凍結乾燥され、プールされたピークは再構築された(SDS−PAGEの可能な装填容量に限りがあるため、初期容量と比較して低い容量の水中で)。得られたプールされた試料を、SDS−PAGEにより分離し、ニトロセルロースシート上に移し、ポリクローナル抗α−トロンビンに対して免疫ブロットした(データ示さず)。α、β、γの混合物を対照として使用した。
【0301】
ピークはウエスタンブロットにおいて得たバンドの分子量に基づき、及び標準品のα、β、γミックスとの比較により特定された。
【0302】
【表8】
【0303】
ウエスタンブロットにおいて得られた結果は、トロンビンの分解ポリペプチドはピーク3、5、及び5aにおいて溶出することを示す。類似する分子量を有するピーク1、2、4、6、及び8は、α−トロンビンとして特定された。「特定されず」と表示されるピークの相対面積は「特定された」ピークと比較して小さかった。
【0304】
機構に束縛されるものではないが、α−トロンビンはHPLC−AEX系においていくつかのピークに分離され、おそらく、それらの正味電荷が異なるいくつかのα−トロンビン種に相当する。
【0305】
実施例11及び12の結果は、有利に、α、β、γ−トロンビン、α−トロンビン種、並びにHSA(HSA分離のデータはこの実施例において示されない)間の完全な分離が毎分3.5%の緩衝液Bの傾きを用いた100%緩衝液A〜100%緩衝液BのAEX−HPLC直線pH勾配を使用して得ることができることを示す。緩衝液の組成は、実施例6に記載される通りである。
【0306】
実施例13:HPLC−AEXにより分離されたα−トロンビン種の特定
本実施例の目的は、HPLC−AEXクロマトグラフィーにおいてα−トロンビンについて検出された複数のピークを特徴付けることであった。α−トロンビンの異なる種が異なる翻訳後修飾α−トロンビン形態によるものであるかを探求した。いくつかの翻訳後修飾がある。グリコシル化が1つの可能性である。グリコシル化はタンパク質の活性に影響を及ぼすため(Ricardo J.Sola and Kai Griebenow.「Glycosylation of Therapeutic Proteins:An Effective Strategy to Optimize Efficacy」.BioDrugs.2010;24(1):9〜21)、以下の実施例はグリコシル化に焦点を当てる。
【0307】
ヒトα−トロンビンは、その「重鎖」上に単一のN結合グリコシル化部位を有する。HPLC−AEXクロマトグラフィーにおいて分離されたα−トロンビンがN結合ブリコシル化部位上の異なるシアリル化レベル、すなわち、グリコシル化部位に様々な量のN−アセチルノイラミン酸(NANA)(シアル酸)を含有するα−トロンビンに相当するという可能性を探求した。
【0308】
この目的のため、トロンビン溶液は製造者の指示に従い(Sigma Aldrich,N2876)、N−アセチルノイラミニダーゼ処理を受けた。N−アセチルノイラミニダーゼ(NANase)は、NANA残基をグリカンの末端から除去することができる酵素である。これらの荷電糖残基を除去することにより、グリコシル化タンパク質の各々の全体的な電荷が同じレベルとなる。
【0309】
次の工程では、NANase処理したトロンビン溶液を、実施例12に記載されるようにAEX−HPLC系に注入した。処理しなかったトロンビン溶液は対照として注入された。
【0310】
結果(図12)は、NANaseによるトロンビンの処理が溶出プロファイルに影響を及ぼし、クロマトグラムの左側へのピークの全体的なシフト(未処理のトロンビン溶液と比較したとき)をもたらすことを示す。シアル酸残基の負電荷の損失により、所与のpHでのトロンビンのタンパク質正味電荷が増加し、それによりカラムからの溶出をより早くさせる。これらの結果をかんがみて、多くのピークがNANA含量の相違に起因すると結論付けることができる。
【0311】
実施例14:タンパク質溶液からの均質な翻訳後修飾α−トロンビンの精製
前の実施例では、α−トロンビンが異なる量のNANA/シアリル化レベルを含有する明確なピークに分離され得ることが分かった。
【0312】
この実施例では、目的は、AEX−HPLCを使用して、実質的に同一のプロファイルのNANAを含有する均質なα−トロンビン種を単離することであった。以下の条件を使用した。
【0313】
使用されたカラムは、実施例2と同様、Sepax 403NP5−4625、幅4.6x長さ250mmであった。30μLのトロンビン溶液、100μLの製剤化トロンビン、及び100μLの緩衝液A(示さず)を注入した。
【0314】
樹脂からのタンパク質の溶出は、20mMピペラジン(Sigma Aldrich,P45907)、20mMトリエタノールアミン(Sigma Aldrich,T9534)、20mMビス−トリスプロパン(Sigma Aldrich,B4679)、及び20mM 1−メチルピペラジン(Sigma Aldrich,13000〜1)を含むpH勾配を使用して実施された。緩衝液は、pH9.1(緩衝液A)及びpH3.4(緩衝液B)に調整された。
【0315】
毎分3.5%の緩衝液Bの増加での直線pH勾配、及び表9に示される流量条件を使用した。
【0316】
【表9】
【0317】
図13は、2つの溶出したトロンビン試料の完全な長さのクロマトグラムを示す。図14は、α−トロンビン種及び分解ポリペプチド溶出領域の拡大図を示す。
【0318】
製剤化トロンビンのクロマトグラムに関して、HSA、いくつかの荷電α−トロンビン種(矢印で示される)、及びアセチルトリプトファン間の完全な分離が達成され得ることが分かる。
【0319】
トロンビン溶液のクロマトグラムに関して、いくつかの荷電α−トロンビン種(矢印で示される)と分解ポリペプチドとの間の完全な分離が達成され得ることが分かる。
【0320】
これらの結果は、異なる均質なα−トロンビン種がトロンビン含有試料において互いから分離され得ることを示す。また、結果は、分離の質が、均質な翻訳後修飾α−トロンビンを、タンパク質溶液及び/又は不均質な翻訳後修飾α−トロンビンを含む溶液から精製することを可能にすることを示す。
【0321】
実施例15:均質な翻訳後修飾α−トロンビン及びトロンビン分解ポリペプチドの定量化
先行の実施例は、NANAの均質な含量を含有するα−トロンビンピークがAEX−HPLCにより十分に分離され得ることを示す。ピークの完全な分離は、関連する分離されたピークの積分を計算することにより、トロンビン含有溶液中のα、β、γトロンビン変異型の定量化を可能にする(表10を参照されたい)。AEX−HPLCに使用された条件は前の実施例に記載される通りであった。
【0322】
【表10】
*面積はソフトウェアによって計算されたピーク下積分面積を指す。
**計算されたピーク合計面積からの相対面積。
【0323】
全てのα−トロンビン種及び分解ポリペプチドの定量が得られたことが示された。
【0324】
本方法は、有利に、溶液中に存在する全てのタンパク質からのα−トロンビンの量を定量化するため、及び/又は好適な製剤をスクリーニングするためにも使用され得る。
【0325】
また、結果は、本発明の方法を使用して、1種のβ−トロンビンが精製され、定量化され得ることを示す。
【0326】
本明細書で様々な実施形態について記載したが、それらの実施形態に対する多くの修正及び変形が実施されてもよい。また、材料が特定の構成要素に関して開示されているが、他の材料が使用されてもよい。以上の説明及び以下の特許請求の範囲は、そのような修正及び変形を全て包含することが意図される。
【0327】
全体又は部分的に、参照によって本明細書に組み込まれるとされるいずれの特許、刊行物、又はその他の開示物も、組み込まれる内容が既存の定義、記載、又は本開示に記載されているその他の開示物と矛盾しない範囲でのみ本明細書に組み込まれるものとする。したがって、また必要な範囲で、本明細書に明瞭に記載される開示内容は、参照により本明細書に組み込まれるあらゆる矛盾する記載に優先するものとする。
【0328】
本出願のいずれの参照文献の引用又は指定も、このような文献が本発明の先行技術として利用可能であることを認めるものと解釈されるべきではない。
【0329】
節の表題は、ここでは本明細書の理解を容易にするために用いられ、必ずしも限定するものと解釈されるべきではない。
【0330】
〔実施の態様〕
(1) α−トロンビンと、α−トロンビン分解ポリペプチド又は別のタンパク質のうちの少なくとも1つとを含む溶液中の前記α−トロンビンを定量化するための一工程クロマトグラフィー方法であって、
前記溶液を陰イオン交換体と接触させる工程と、
差次的溶出条件により、陰イオン交換クロマトグラフィーで、前記α−トロンビンを、前記α−トロンビン分解ポリペプチド及び/又は前記別のタンパク質のうちの前記少なくとも1つから分離する工程と、
前記α−トロンビンを定量化する工程と、を含む、一工程クロマトグラフィー方法。
(2) 1つ又は2つ以上の分解ポリペプチドを更に定量化する、実施態様1に記載の方法。
(3) 前記分離したα−トロンビンが、均質な翻訳後修飾α−トロンビンであり、それにより均質な翻訳後修飾α−トロンビンを定量化する、実施態様1又は2に記載の方法。
(4) 前記均質な翻訳後修飾α−トロンビンが、均質なグリコシル化α−トロンビンであり、それにより均質なグリコシル化α−トロンビンを定量化する、実施態様3に記載の方法。
(5) 前記分離した均質な翻訳後修飾α−トロンビンが、均質なシアリル化α−トロンビンであり、それにより均質なシアリル化α−トロンビンを定量化する、実施態様4に記載の方法。
【0331】
(6) 前記溶液が前記別のタンパク質を含み、前記別のタンパク質がヒト血清アルブミンである、実施態様1〜5のいずれかに記載の方法。
(7) 不均質な翻訳後修飾α−トロンビンを含む溶液中の均質な翻訳後修飾α−トロンビンを定量化するための一工程クロマトグラフィー方法であって、
前記溶液を陰イオン交換体と接触させる工程と、
差次的溶出条件により、陰イオン交換クロマトグラフィーで、前記均質な翻訳後修飾α−トロンビンを、前記不均質な翻訳後修飾α−トロンビンから分離する工程と、
前記均質な翻訳後修飾α−トロンビンを定量化する工程と、を含む、一工程クロマトグラフィー方法。
(8) 前記溶液が、α−トロンビン分解ポリペプチド又は別のタンパク質のうちの少なくとも1つを更に含み、前記方法が、前記均質な翻訳後修飾α−トロンビンを、前記α−トロンビン分解ポリペプチド及び/又は前記別のタンパク質のうちの前記少なくとも1つからも分離する工程を含む、実施態様7に記載の方法。
(9) 前記差次的溶出条件が、pH勾配を含む、実施態様1〜8のいずれかに記載の方法。
(10) 前記pH勾配が、アミン又はアミンの混合物を含む溶離剤を使用することにより生成される、実施態様9に記載の方法。
【0332】
(11) 前記陰イオン交換体が、非多孔質粒子でできている、実施態様1〜10のいずれかに記載の方法。
(12) 前記クロマトグラフィー方法が、陰イオン交換高性能液体クロマトグラフィー方法である、実施態様1〜11のいずれかに記載の方法。
(13) α−トロンビンを、前記α−トロンビンと、α−トロンビン分解ポリペプチド又は別のタンパク質のうちの少なくとも1つとを含む溶液から精製するための方法であって、
前記溶液を陰イオン交換体と接触させる工程と、
差次的溶出条件を使用して、陰イオン交換クロマトグラフィーにより、前記α−トロンビンを、前記α−トロンビン分解ポリペプチド及び/又は前記別のタンパク質のうちの前記少なくとも1つから分離する工程と、
α−トロンビン画分を回収する工程と、
それにより精製α−トロンビンを得る工程と、を含む、方法。
(14) 前記α−トロンビンが、ヒト血液又は血漿源からのものである、実施態様13に記載の方法。
(15) 前記回収したα−トロンビン画分が、均質な翻訳後修飾α−トロンビンであり、それにより精製した均質な翻訳後修飾α−トロンビンを得る、実施態様13又は14に記載の方法。
【0333】
(16) 前記回収した均質な翻訳後修飾α−トロンビンが、均質なグリコシル化α−トロンビンであり、それにより精製した均質なグリコシル化α−トロンビンを得る、実施態様15に記載の方法。
(17) 前記回収した均質な翻訳後修飾α−トロンビンが、均質なシアリル化α−トロンビンであり、それにより精製した均質なシアリル化α−トロンビンを得る、実施態様16に記載の方法。
(18) 前記溶液が前記別のタンパク質を含み、前記別のタンパク質がヒト血清アルブミンである、実施態様13〜17のいずれかに記載の方法。
(19) 前記方法が、1つのクロマトグラフィー工程からなる、実施態様13〜18のいずれかに記載の方法。
(20) 均質なα−トロンビングリコフォームを、不均質なグリコシル化α−トロンビン種を含む溶液から精製するための方法であって、
前記溶液を陰イオン交換体と接触させる工程と、
差次的溶出条件を使用して、陰イオン交換クロマトグラフィーにより、前記均質なα−トロンビングリコフォームを前記不均質な種から分離する工程と、
均質なα−トロンビングリコフォーム画分を回収する工程と、
それにより精製した均質なα−トロンビングリコフォームを得る工程と、を含む、方法。
【0334】
(21) 前記精製した均質なα−トロンビングリコフォームを更に定量化する、実施態様20に記載の方法。
(22) 前記差次的溶出条件が、pH勾配を含む、実施態様13〜21のいずれかに記載の方法。
(23) 前記pH勾配が、アミン又はアミンの混合物を含む溶離剤を使用することにより生成される、実施態様22に記載の方法。
(24) 前記陰イオン交換体が、非多孔質粒子でできている、実施態様13〜23のいずれかに記載の方法。
(25) 単離した均質な翻訳後修飾α−トロンビン。
【0335】
(26) 前記α−トロンビンが、ヒト血漿源からのものである、実施態様25に記載の単離した均質な翻訳後修飾α−トロンビン。
(27) 均質にグリコシル化されたα−トロンビンである、実施態様25又は26に記載の単離した均質な翻訳後修飾α−トロンビン。
(28) 前記α−トロンビンが、1つの特定のグリコフォームで表される、実施態様25〜27のいずれかに記載の単離した均質な翻訳後修飾α−トロンビン。
(29) 均質にシアリル化されたα−トロンビンである、実施態様28に記載の単離した均質な翻訳後修飾α−トロンビン。
(30) 実施態様13〜24のいずれかに記載の方法により得ることができる精製α−トロンビン。
【0336】
(31) 実施態様25〜29のいずれかに記載の単離した均質な翻訳後修飾α−トロンビン及び/又は実施態様30に記載の精製α−トロンビンを含む、製剤。
(32) 止血処置、封止、移植片固定、創傷治癒、抗接着、及び/又は吻合のための、実施態様31に記載の製剤の使用。
(33) 第1の成分として、実施態様20〜24のいずれかに記載の方法により得ることができる精製した均質なα−トロンビングリコフォーム、及び/又は実施態様25〜29のいずれかに記載の単離した均質な翻訳後修飾α−トロンビンを含む容器を含む、キット。
(34) β−トロンビンと、α−トロンビン、γ−トロンビン、又は別のタンパク質のうちの少なくとも1つとを含む溶液中の前記β−トロンビンを定量化するための一工程クロマトグラフィー方法であって、
前記溶液を陰イオン交換体と接触させる工程と、
差次的溶出条件により、陰イオン交換クロマトグラフィーで、前記β−トロンビンを、前記α−トロンビン、γ−トロンビン、及び/又は前記別のタンパク質のうちの前記少なくとも1つから分離する工程と、
前記β−トロンビンを定量化する工程と、を含む、一工程クロマトグラフィー方法。
(35) 前記クロマトグラフィー方法が、陰イオン交換高性能液体クロマトグラフィー方法である、実施態様34に記載の方法。
【0337】
(36) β−トロンビンを、前記β−トロンビンと、α−トロンビン、γ−トロンビン、又は別のタンパク質のうちの少なくとも1つとを含む溶液から精製するための方法であって、
前記溶液を陰イオン交換体と接触させる工程と、
差次的溶出条件を使用して、陰イオン交換クロマトグラフィーにより、前記β−トロンビンを、前記α−トロンビン、γ−トロンビン、及び/又は別のタンパク質のうちの前記少なくとも1つから分離する工程と、
β−トロンビン画分を回収する工程と、
それにより精製β−トロンビンを得る工程と、を含む、方法。
(37) 前記差次的溶出条件が、pH勾配を含む、実施態様34〜36のいずれかに記載の方法。
(38) 前記pH勾配が、アミン又はアミンの混合物を含む溶離剤を使用することにより生成される、実施態様37に記載の方法。
(39) 前記陰イオン交換体が、非多孔質粒子でできている、実施態様34〜38のいずれかに記載の方法。
(40) 実施態様36〜39のいずれかに記載の方法により得ることができる精製β−トロンビン。
【0338】
(41) 単離したβ−トロンビン。
(42) 実施態様40に記載の精製β−トロンビン及び/又は実施態様41に記載の単離したβ−トロンビンを含む、製剤。
(43) 止血処置、封止、移植片固定、創傷治癒、抗接着、及び/又は吻合のための、実施態様42に記載の製剤の使用。
(44) 第1の成分として、実施態様40に記載の精製β−トロンビン及び/又は実施態様41に記載の単離したβ−トロンビンを含む容器を含む、キット。
(45) 水性液体トロンビン製剤中のトロンビン活性の安定化における使用可能性について化合物をスクリーニングするための方法であって、所与の時間の間、試験化合物を、α−トロンビンを含む溶液と共にインキュベートする工程と、前記インキュベーション後、実施態様1、2、6、又は9〜12のいずれかに記載のα−トロンビン及び/又は分解ポリペプチドを定量化する工程と、トロンビン活性の安定化における使用可能性を有する1つ又は2つ以上の好適な試験化合物を特定する工程と、を含み、好適な化合物が、初期のα−トロンビン含量と比較して、約70%〜約100%のレベルで前記α−トロンビン含量を維持し、かつ/又は前記試験化合物の不在下の分解ポリペプチドのレベルと比較したとき、約0%〜約30%まで分解ポリペプチドのレベルを低減する化合物である、方法。