(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】2019504547
(43)【公表日】20190214
(54)【発明の名称】超音波アレイのための音響レンズ
(51)【国際特許分類】
   H04R 19/00 20060101AFI20190118BHJP
   A61B 8/14 20060101ALI20190118BHJP
【FI】
   !H04R19/00 330
   !A61B8/14
【審査請求】未請求
【予備審査請求】未請求
【全頁数】23
(21)【出願番号】2018531223
(86)(22)【出願日】20161216
(85)【翻訳文提出日】20180614
(86)【国際出願番号】EP2016081526
(87)【国際公開番号】WO2017103172
(87)【国際公開日】20170622
(31)【優先権主張番号】15200991.6
(32)【優先日】20151218
(33)【優先権主張国】EP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT,TZ
(71)【出願人】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】KONINKLIJKE PHILIPS N.V.
【住所又は居所】オランダ国 5656 アーエー アインドーフェン ハイテック キャンパス 5
【住所又は居所原語表記】High Tech Campus 5,NL−5656 AE Eindhoven
(74)【代理人】
【識別番号】110001690
【氏名又は名称】特許業務法人M&Sパートナーズ
(72)【発明者】
【氏名】ダークセン ペーター
【住所又は居所】オランダ国 5656 アーエー アインドーフェン ハイ テック キャンパス 5
(72)【発明者】
【氏名】シュレポフ セルゲイ
【住所又は居所】オランダ国 5656 アーエー アインドーフェン ハイ テック キャンパス 5
(72)【発明者】
【氏名】ハッケンス フランシスカス ヨハネス ゲラルドゥス
【住所又は居所】オランダ国 5656 アーエー アインドーフェン ハイ テック キャンパス 5
(72)【発明者】
【氏名】ティンメルマンス ペトルス ヘンリクス マリア
【住所又は居所】オランダ国 5656 アーエー アインドーフェン ハイ テック キャンパス 5
(72)【発明者】
【氏名】ベッカース ルカス ヨハネス アンナ マリア
【住所又は居所】オランダ国 5656 アーエー アインドーフェン ハイ テック キャンパス 5
【テーマコード(参考)】
4C601
5D019
【Fターム(参考)】
4C601EE01
4C601EE10
4C601GB03
4C601GB33
4C601GB34
4C601GB35
4C601GB41
5D019AA01
5D019DD01
5D019FF04
5D019GG03
(57)【要約】
CMUTアレイに適した音響レンズを提供する。音響レンズは、炭化水素系から選択されるポリマー材料を有する熱硬化性エラストマーを含む第1層であって、アレイに面するように配置された内面と、内面に対向するように配置された凸状外面とを有する第1層と、第1層の外面に結合される第2層であって、熱可塑性ポリマーポリメチルペンテン及びそれに混合されるポリオレフィン系から選択されるエラストマー(POE)を含む第2層とを含み、外層は音響窓層の外面に位置し、第1層は第1音波速度(v1)を有し、第2層は第2音波速度(v2)を有し、前記第2速度は第1音波速度よりも速い。
【特許請求の範囲】
【請求項1】
静電容量型微細加工トランスデューサ(CMUT)の超音波アレイのための音響レンズであって、前記音響レンズは、
炭化水素系から選択されるポリマー材料を有する熱硬化性エラストマーを含む第1層であって、前記超音波アレイに面するように配置された内面と、前記内面に対向するように配置された凸状外面とを有する第1層と、
前記第1層の前記外面に結合され、熱可塑性ポリマーポリメチルペンテンとそれに混合されるポリオレフィン系から選択されるエラストマーとを含む第2層とを含み、
前記第1層は第1音波速度を有し、前記第2層は第2音波速度を有し、前記第2音波速度は前記第1音波速度よりも速い、
音響レンズ。
【請求項2】
前記熱硬化性エラストマーはポリブタジエンを含む、請求項1に記載の音響レンズ。
【請求項3】
前記選択されるエラストマーは熱可塑性エラストマー(TPE)である、請求項1又は2に記載の音響レンズ。
【請求項4】
ポリブタジエンを含む前記第1層はさらに、前記第1層の音響インピーダンスの調整のために中に埋め込まれた粒子を含む、請求項2に記載の音響レンズ。
【請求項5】
前記第1層の音響インピーダンスは前記第2層の音響インピーダンスと実質的に同じであるように、前記第1層の総重量に基づく前記粒子の重量パーセントは、前記第2層の総重量に基づく前記エラストマーの重量パーセントに関係する、請求項4に記載の音響レンズ。
【請求項6】
前記第1層及び前記第2層の前記音響インピーダンスは約1.6MRaylである、請求項5に記載の音響レンズ。
【請求項7】
前記第1層中の前記粒子はセラミック粒子を含み、前記選択されるエラストマーは、アルファオレフィンである第1モノマーとエチレンである第2モノマーとを有するコポリマーを含む、請求項4に記載の音響レンズ。
【請求項8】
前記第1モノマーはオクタンを有する、請求項7に記載の音響レンズ。
【請求項9】
前記セラミック粒子は二酸化ジルコニウム(ZrO)粒子を含む、請求項8に記載の音響レンズ。
【請求項10】
前記第1層の総重量に基づく前記セラミック粒子の重量パーセントは最大でも25%、前記第2層の総重量に基づく前記エラストマーの重量パーセントは最大でも40%である、請求項9に記載の音響レンズ。
【請求項11】
前記第1層の総重量に基づく二酸化ジルコニウム粒子の重量パーセントは約25%、前記第2層の総重量に基づく前記選択されるエラストマーの重量パーセントは約20%である、請求項5又は7に記載の音響レンズ。
【請求項12】
前記第1層と前記第2層との間の音響インピーダンスの差は0.3MRaylより小さい、請求項1に記載の音響レンズ。
【請求項13】
前記第1音波速度(v1)は約1900m/sであり、前記第2音波速度(v2)は約1500m/sである、請求項1に記載の音響レンズ。
【請求項14】
請求項1乃至13のいずれか一項に記載の音響レンズを含む、超音波プローブ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は静電容量型微細加工トランスデューサの超音波アレイのための音響レンズに関する。本発明はさらに、そのような音響レンズを含む超音波プローブに関する。
【背景技術】
【0002】
近年の半導体技術の進歩により、静電容量型微細加工超音波トランスデューサ(CMUT:capacitive micro−machined ultrasound transducers)の発展がもたらされた。これらのトランスデューサは、従来の圧電性超音波トランスデューサ(PZT:piezoelectric based ultrasound transducers)に置き換わる可能性のある候補と考えられる。CMUTトランスデューサセルは、膜とも呼ばれる可動機械部品付きのキャビティと、キャビティにより分離された1対の電極とを備える。超音波を受信する際、超音波が膜を移動又は振動させ、検出可能な電極間の静電容量を変化させる。それにより、超音波は対応する電気信号に変換される。反対に、電極に印加された電気信号は、膜を移動又は振動させ、それにより超音波を送信する。
【0003】
CMUTの利点は、半導体製造プロセスを用いて作製でき、それゆえ特定用途向け集積回路(ASIC:application−specific integrated circuitry)とより簡単に一体化されることであり、CMUTトランスデューサは、低コスト、拡張された周波数領域、従来のPZTよりも微細な音響ピッチを提供する。もともとPZT系技術により、CMUTと共に一般に使用される超音波アレイのほとんどは、例えばRTVなどのシリコンゴムのような、PZT系トランスデューサに使用される材料から選択された音響窓又はレンズ材料を有する。
【0004】
米国特許第4,880,012号は圧電性(PZT)系アレイを用いた用途に適する複合音響レンズを開示している。米国特許4,880,012号の音響レンズは、PZTアレイと接触している音響整合層の上面に結合された第1層と、第1層の上面に結合された第2音響レンズ層とを備える。この音響レンズは、第1層よりも高減衰の第2音響レンズ層を設けることによりアレイによって生成された超音波を収束させ、波の損失が界面において任意の座標で一定になるようにする。米国特許第4,880,012号の音響レンズの第1層は、充填剤を含まず、約1000m/sの音速を示すシリコンゴムでできている。第2音響レンズ層は、超音波減衰係数を上昇させるために酸化アルミニウムなどの充填剤を含むシリコンゴムでできている。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、CMUTはPZTとは異なる電気音響変換のメカニズムを有し、CMUT膜とレンズに使用される音響材料との間の相互作用がトランスデューサの音響性能を低下させる。容易にその場で鋳造され、所望の形状に成型によって形成され、CMUTアレイと接触する従来の充填シリコンゴム(ここでは室温硬化型ゴム又はRTVとも言う)の音響レンズ材料は、CMUTアレイに通常の周波数依存減衰に加えてさらなる音響損失をもたらすことがわかった。この損失は増加した減衰において2dB程度現れ、中心周波数を4MHzまで下降させる。
【0006】
音波伝送用のCMUT系超音波アレイに適した改善された音響レンズを提供することが必要とされており、ここではCMUTセルは従来の作動モード及びつぶれ作動モードの両方において作動するように適合される。
【0007】
本発明の目的は、静電容量型微細加工トランスデューサを備える超音波アレイのための音響レンズであって、層の化学的及び機械的安定性と共に音波伝搬を向上させる音響レンズを提供することである。
【課題を解決するための手段】
【0008】
本発明によれば、この目的は、炭化水素系から選択されるポリマー材料を有する熱硬化性エラストマーを含む第1層であって、アレイに面するように配置された内面と、内面に対向するように配置された凸状外面とを有する第1層と、第1層の外面に結合される第2層であって、第2層の音響インピーダンスの調整のために熱可塑性ポリマーポリメチルペンテンとそれに混合されるポリオレフィン系から選択されるエラストマー(POE)とを含む第2層とを含む音響レンズを設けることで達成され、ここで第1層は第1音波速度(v1)を有し、第2層は第2音波速度(v2)を有し、第2速度は第1音波速度よりも速い。
【0009】
本発明の音響レンズは、CMUTアレイに適用できる音波収束レンズを設けるのに適した2つの材料を有利に融合して使用する。熱硬化性エラストマーの第1層は、炭化水素系から選択されるポリマー材料を含む。CMUTアレイに近接して配置されるこの層は、医用超音波に適用できる2〜25MHzといった広範囲の音波周波数に対して2dB未満の、通り抜ける音響エネルギーに対するミリメートル当たりの音響損失を示す。炭化水素系から選択されるポリマー材料を含む熱硬化性エラストマーの層は0.95g/cm以下の密度及び1.45MRayl以上の音響インピーダンスを有する。CMUTセル膜と直接接触して配置されるとき、第1層は音響窓層のCMUTセルの膜への音響結合を改善する。したがって音響窓及びCMUTアレイの間に追加の結合媒体は不要である。ポリメチルペンテンなどの熱可塑性ポリマーを含む第2層は、音響レンズの機械的及び化学的安定性を付与する。熱硬化性エラストマーを含む第1層は、第1音波速度(v1)を有し、熱可塑性ポリマーを含む第2層は第1音波速度よりも速い第2音波速度(v2)を有する。この音波速度の差は、第1層の外面の凸形状と組み合わされて、音響レンズの焦点においてCMUTアレイによって生成された音波を収束させる。最低音波減衰を示す層を含む音響レンズを有するのは有益である。音響レンズの第2層として使用されるポリメチルペンテン(TPX)材料は熱可塑性ポリオレフィンの中で最も低い縦波の音波の減衰の1つを示す。ポリメチルペンテンは、医用超音波に適用できる2〜10MHzといった広範囲の音波周波数に対して3.5dB未満の、通り抜ける音響エネルギーに対するミリメートル当たりの音響損失を示す。ポリメチルペンテンは、縦波の音波及び横波の両方に対してより高い減衰を有するポリオレフィンエラストマーとの混合に適している。ポリメチルペンテンとの混合物にポリオレフィンエラストマーを導入することにより、混合物の密度が変化する。材料の音響インピーダンスはその材料の密度に比例し、第2層の平均インピーダンスは混合されたエラストマーで調整される。ポリメチルペンテンは、混合物の機械的及び化学的安定性と音波の低減衰性とを付与し、一方ポリオレフィンエラストマーは混合物の音響インピーダンスを調整し、さらにその音波伝搬特性を改善する可能性を提供する。第2層が低い音響減衰性を呈する場合、低減された音響インピーダンスは、人体、ヒト組織により近くなる(約1.6MRayl)。さらに、ポリオレフィンの性質の混合物を含む第2層は、低い水浸透レベルをもたらす。この混合物を含む第2層は消毒剤(通常の医用超音波装置に使用される)に耐性があり、衝撃及び摩耗に対する耐性として優れた機械的保護特性を有し、生体適合性である。ポリメチルペンテン及びポリオレフィンエラストマーの混合物はまた、トランスデューサ要素間のクロストークを有利に低減する、横波の高い減衰をもたらす。したがって、そのような第2層の適用により、超音波撮像中の画像アーティファクトが減少する。
【0010】
本発明の別の実施形態において、エラストマーはポリブタジエンを含む。
【0011】
可能な限り最低の音波減衰を示す層を含む音響レンズを有するのは有益である。ポリブタジエンは伝搬する音響エネルギーに対して最も低い減衰効果の1つを示す。ポリブタジエン材料はまた、伝搬する音響信号に対して3dBの点において約140%の広帯域幅をもたらす。この材料のCMUTアレイへの音響結合は、CMUTの振動(移動)部の機械特性を最適に維持し、最適な音響エネルギー伝搬をもたらす結果となる。
【0012】
さらなる実施形態において、ポリブタジエンを含む第1層はさらに、第1層の音響インピーダンスの調整のために中に埋め込まれた粒子を含む。
【0013】
ポリマー材料の粒子に埋め込み粒子を導入することで第1層の総音響インピーダンスを増加させる可能性を提供する。これにより第1層のインピーダンスを第2層の音響層インピーダンスに近づけて調整することができる。
【0014】
ポリブタジエンがそのような低い音響エネルギー損失(減衰)を示すという事実から、埋め込み粒子よって生じる可能性のあるさらなる音響損失は、音響窓層を通る音波伝搬の品質に影響するには十分低い。音響レンズの第1層が埋め込み絶縁性粒子と共にポリブタジエンを含むとき、音響窓層がCMUTセルの膜に直接音響結合される。したがって音響窓とCMUTアレイとの間に追加の結合媒体は不要である。さらに、ポリマー層材料の比較的低い密度及び比較的高い音響インピーダンスにより、例えばシリコンゴムに比べて、さらなる音響インピーダンスの調整のために比較的小さな重量パーセントの粒子を追加する必要があり、レンズの最大音響インピーダンスが超音波処理した組織の音響インピーダンスに対応する、約1.6MRaylの値を超えないようにする。
【0015】
別の実施形態において、第2層のエラストマーはコポリマー鎖を含む熱可塑性エラストマーである。
【0016】
本実施形態の外側音響層は、熱可塑性の特性を有する混合物である。熱可塑性ポリオレフィンエラストマー(TPE)の一例は、エチレン及びオクタン又はブタンのような別のアルファオレフィンのコポリマーである。本発明の別の実施形態において、第1層の音響インピーダンスは第2層の音響インピーダンスと実質的に同じであるように、第1層の総重量に基づく粒子の重量パーセントは、第2層の総重量に基づくエラストマーの重量パーセントに関係する。
【0017】
本実施形態により第1及び第2層の音響インピーダンスを、第2音波速度を第1音波速度より高く維持しながら相対的に調整することができる。第1層内の粒子及びポリオレフィンエラストマーの比率は2層の音響インピーダンスが釣り合う(実質的に同一になる)ように選択することができる。この場合、2層の界面における音波の反射は釣り合った音響インピーダンスにより最小限に抑えられる。したがって、音波の収束に適した音響レンズの伝送特性が改善される。レンズの音波インピーダンスを約1.6MRaylの組織のインピーダンスに近づけることはさらに有益である。
【0018】
本発明のさらなる実施形態において、第1層中の粒子はセラミック粒子を含み、選択されたエラストマーはオクタンなどのアルファオレフィンである第1モノマーと、エチレンである第2モノマーとを有するコポリマーを含む。
【0019】
セラミック粒子は絶縁性であり、したがって医用用途においてしばしば望ましくない第1層の導電率を低減することができる。オレフィン系コポリマーはポリメチルペンテンと混合するのに適している。
【0020】
本発明のさらに別の実施形態において、第1層の総重量に基づくセラミック粒子の重量パーセントは最大でも25%、第2層の総重量に基づくエラストマーの重量パーセントは最大でも40%である。
【0021】
本実施形態は音響レンズを通した音波伝送の改善された条件を提供する。粒子の比率を25%、エラストマーの比率を40%、好ましくは約20%に制限することで、レンズ層における音波減衰を制御することができる。
【0022】
本発明のこれら及び他の態様は、以下に説明する実施形態から明らかであり、該実施形態を参照して説明されるだろう。
【図面の簡単な説明】
【0023】
【図1】音波の収束に適した音響レンズに結合された超音波アレイの側面図を模式的、例示的に示す図である。
【図2】本発明の原理に従う、静電容量型微細加工トランスデューサの超音波アレイと、第1層及び第2層を有する音響レンズとを含む超音波プローブの側面図を模式的、例示的に示す図である。
【図3】超音波アレイのCMUTセルと、その上に重なるレンズであって、中に絶縁性粒子が埋め込まれたポリブタジエンの第1層及び中にポリオレフィン系から選択されるエラストマー(POE)が混合されるポリメチルペンテンの第2層を含むレンズの側面図を模式的、例示的に示す図である。
【図4】異なる音響レンズ材料において通り抜ける音響エネルギーに対するミリメートル当たりの音響損失(dB)の音響周波数依存性を比較するグラフである。
【図5】ポリメチルペンテン、ポリオレフィンエラストマー、及びポリメチルペンテンとポリオレフィンエラストマーの異なる濃度の混合物の示差走査熱量測定曲線を比較表示した図である。
【図6】ポリメチルペンテン、ポリオレフィンエラストマー、及びポリメチルペンテンとポリオレフィンエラストマーとの異なる濃度の混合物の動的機械分析曲線を比較表示した図である。
【図7】外層及び内層を形成する異なる材料を有する音響窓層を含むCMUTアレイの出力圧力を比較表示した図である。
【図8】つぶれモードで作動し、音響レンズに音響結合されているCMUTセルの側面図を、模式的且つ例示的に示した図である。
【図9】中に埋め込まれた25%のZrO粒子を含むポリブタジエンの第1層と、ポリメチルペンテンと20%のEngageとの混合物を含む第2層とにおいて通り抜ける音響エネルギーに対するミリメートル当たりの音響損失(dB)の音響周波数依存性の比較を示す図である。
【図10】本発明に従って構成された音響レンズに結合されたCMUTアレイの空間音響圧力分布のシミュレーションを示す図である。
【図11】本発明に従って超音波アレイを製造する方法を模式的に示した図である。
【図12】超音波撮像システムの実施形態の概略図である。
【発明を実施するための形態】
【0024】
図1は収束音響レンズ13を構成する原理を示す。レンズ13は音波源である静電容量型超音波トランスデューサアレイ74に結合されている。さらに音響レンズは、内層を形成してCMUTアレイと音響接触している第1層47と、レンズの外層を形成する第2層42とを含む。第1層47はアレイに面するように配置された内面と、第1層の内面に対向するように配置された凸状外面40とを有する。第1層の外面に結合された第2層は音響レンズ13の外面71を形成している。外面は超音波撮像システム202で検査される患者201又は物体に面することを意図されている(図12に図示)。
音速又は音波速度が音響レンズの第1層から第2層へと変化する際、収束又は発散レンズを構成することができる。そのようなレンズの主要原理を1次近似で示すために(レンズのすべての構造は波長に比べて大きい)、光学「レンズメーカーの式」を使用する。この式はレンズの焦点距離(f)と屈折率(n)との間の関係を与え、
【数1】
ここでR1はCMUTアレイに対する第1層の外面の曲率半径であり、R2はCMUTアレイに対する第2層の曲率半径である(本例においてこれはレンズの外面の半径である)。より平坦な外面のレンズの場合、レンズメーカーの式は以下のように表すことができる。
R1=R=(n−1)f (1)
【0025】
レンズの屈折率は第1(v1)及び第2(v2)音響レンズ層内の音波速度の比により定義される。第2音波速度が第1音波速度よりも速い場合(v2>v1)、レンズの屈折率は1より大きい。
【数2】
【0026】
したがって、音響レンズはアレイから焦点距離(f)に位置する焦点において音波を収束させる。
【0027】
第1層の最大厚さ(t)は以下のように計算できる。
【数3】
【0028】
図2は本発明による超音波プローブ200を示し、超音波プローブ200はCMUTアレイ74を含む。超音波アレイ74は音響レンズ13の内面72に面する超音波放出側と、放出側とは反対の裏側とを有する。CMUTアレイは、超音波トランスデューサであって、アレイ内のトランスデューサを駆動して制御するように適合された集積回路に結合された超音波トランスデューサを含む。アレイの裏側は、集積回路の入力及び出力信号を超音波システム202(図12)との間でやりとりする、プローブの基部4’に電気的に結合されている。
【0029】
音響レンズ13は、CMUTアレイ74に面するように配置された内面72及び、内面に対向するように配置された凸状外面40を有する第1層47と、第1層47の外面40に結合された第2層42とを含む。第1層は、炭化水素系から選択されるポリマー材料を含む熱硬化性エラストマーを含む。炭化水素から選択される熱硬化性エラストマーは水素及び炭素原子のみを含み、比較的低密度(1g/cm未満)である。熱硬化性エラストマーをCMUTアレイの放出面に適用することにより第1層を通した音波伝送が改善されることが示された。
【0030】
ほとんどのエラストマーは熱硬化性エラストマーであり、一般に、「節のある」分子鎖の広い網目状の架橋結合によって特徴づけられる。この種類の架橋結合は、材料が高度な寸法安定性を有するが、それでも弾性的に可鍛性であることを意味している。負荷(例えば引張荷重)をかけることにより、鎖は延伸されるが、負荷を除去した後はもう一度緩む。未硬化のエラストマーの通常の硬度は50ShoreA硬度未満であり、デュロメータにより測定される(Aスケール)。概して、硬化(焼成)したエラストマーは50ShoreA硬度より高い硬度を示す。50ShoreA硬度未満の硬度を維持するために、層を含むエラストマーは未硬化にする(ステップで説明されるように溶媒は完全には蒸発していない)又は/及びエラストマー材料の液体混合物に追加された脂肪酸を有することができる。これは以下で詳細に議論する。
【0031】
熱硬化性エラストマーの個々の分子鎖は三次元の細かい網目状の不可逆的架橋結合によって特徴づけられる。熱硬化性エラストマーはエラストマーの中でも化学的及び機械的により安定で、熱可塑性物質と同様に加工される。用途に応じて、様々な硬度の熱硬化性エラストマーを選択することができる。例えば未硬化のポリブタジエンは、約50ShoreA硬度であるが、一方でブチルゴムは、ポリマー鎖が2つのモノマー、イソブチレン及びイソプレンからなり、40ShoreA硬度という低い値を示す。オレフィン系(アルケンとも言う)は少なくとも1つの炭素−炭素二重結合を含む不飽和炭化水素系である。
【0032】
音響レンズ13の第2層42はポリオレフィン系熱可塑性ポリマーポリメチルペンテンを含む。ポリオレフィンは、オレフィン系から選択されるモノマーを含むポリマーである。この層はさらに、音波の減衰を低減させることにより、音響レンズを通した効率的な音波伝送を実現する。第1層が第1音波速度(v1)を有し、第2層が第1音波速度を超える第2音波速度(v2)を有する場合、音響レンズはCMUTアレイによって生成された音波ビームを集束させるために使用することができる。
【0033】
熱可塑性ポリマーは、熱硬化性エラストマーとは異なり、分子鎖が架橋結合されていないポリマーである。したがって、熱可塑性ポリマーは弾塑性的挙動を示し、熱成形可能である(加熱時に柔らかくなるか溶け、冷却時に再度硬くなる特性を有する)。この成型性は可逆的であり、換言すれば、過熱により材料が熱的に損傷しない限り必要に応じて何度でも繰り返すことができる。熱可塑性物質は架橋結合がほとんど又は全くないので、個々のポリマー鎖は加熱時に互いにすり抜けることができる。熱可塑性ポリオレフィンにおいて、飽和炭化水素と比べ、ポリオレフィン系は熱可塑性ポリマーの分子量が比較的軽い。熱可塑性ポリオレフィンは線状アイソタクチックポリマーを含む。概して、熱可塑性ポリマーは60ShoreA硬度を超える硬度を有する。
【0034】
第1層用のレンズに使用する好適な材料はポリブタジエンであり、第2層用はポリメチルペンテンである。ポリブタジエン及びポリメチルペンテン(TPX)は広範囲の周波数において最も低い音波の減衰の1つを示す。図4において、音響レンズに使用される様々な材料に対して、通り抜ける音響エネルギーの減衰の音響周波数依存性を示す。符号は測定データを、線はシミュレーションによる依存性を示す。示されている材料は周波数の増加と共に減衰値の一定の増加を示している。最も大きな減衰は、周波数と共に顕著に増加するが、一般に使用される充填シリコンゴム(RTV−560、曲線81)に対して観測され、約7MHzの周波数において減衰は約5dB/mmに達する。最も小さな減衰は、ポリブタジエン(曲線85)に対して観測され、10MHz未満の周波数において減衰は1dB/mm未満を示す。RTV−560に比べ、ポリメチルペンテン材料(曲線83)は、2MHzにおいて約0.5dB/mmから10MHzにおいて3dB/mmまで変化する改善された減衰を示す。TPXとEngage 8180(商品名EngageでDow Chemicalから入手可能なエチレン−オクテンコポリマー)との重量比80%と20%との混合物は、純粋なポリメチルペンテンに比べて減衰依存性が増加するが、この依存性は一般に使用される充填シリコンに比べればまだ改善されている。TPX/Engage 8180(20%)混合物中の音波減衰は2MHzにおいて約0.5dB/mmから10MHzにおいて4.5dB/mmまで変化する。
【0035】
ポリブタジエン材料を含む第1層は約1570メートル毎秒(m/s)の音波速度を有し、ポリメチルペンテン材料を含む第2層は約2000m/sの音波速度を有する。これらの2つの材料を音響レンズに適用することで広範囲の周波数において収束レンズの音波減衰が最小化される。
【0036】
ポリブタジエンのさらなる利点は、音響インピーダンスの整合に適した材料であるということである。ポリブタジエン材料は、約1.45MRaylの音響インピーダンスを有する。超音波アレイ、第2層及び超音波処理した組織の間のインピーダンスの不一致を最小限にするため、ポリブタジエンを含む第1層47の音響インピーダンス値を増加することが望ましい。これは絶縁性粒子41などの充填剤を第1層47に追加することで実現できる(図3)。絶縁性粒子をポリブタジエンに導入することにより第1層の総密度が増加する。図4に既に示されているように、埋め込まれた絶縁性粒子によって生じるさらなる音響損失は十分低く、第1層を通る音波伝搬の品質に大きく影響しない。
【0037】
例として、表1は、平均して2〜3ミクロンの直径を有し、内層の総重量の所定の比率を占める二酸化ジルコニウム(ZrO)の絶縁性粒子を導入したポリブタジエン層の音響特性において測定された変化を示す。
【0038】
【表1】
【0039】
ポリブタジエンを含む第1層の総密度を増加させた表に見られるように、第1層の音響インピーダンスは、より高い値へと調整することができ、一方で層の減衰は重量の25%を絶縁性粒子(ZrO)で占められている層に対してでも1.5dB/mm未満のままである。表に見られるように、粒子の追加と共に、材料の音響インピーダンスと、この材料を通って進む音波の速度の両方を変化させることができる。
【0040】
材料の音響インピーダンス(Z)は、媒質中の音響エネルギー(又は音波)の音響伝播速度(v)と、この媒質の密度(ρ)の積で次のように定義される。
Z=ρ×v
【0041】
したがって、表1からポリブタジエン材料においても見られるように、材料の密度を変化させることで、その音響インピーダンス及び音波速度を調整することができる。
【0042】
レンズの第1層が、絶縁性粒子を埋め込まれたポリブタジエンを含み、0.94g/cm以上の密度及び1.5MRayl以上の音響インピーダンスを有するとき、音響窓層がCMUTセルの膜に直接音響結合される。したがって音響窓とCMUTアレイとの間に追加の結合媒体は不要である。さらに、1.5MRayl以上の音響インピーダンスは、CMUT音響インピーダンスと組織との間の値に近づいた。
【0043】
炭化水素系から選択される熱硬化性エラストマーは、一般に超音波に使用されるシリコン系ゴム(充填シリコン)に比べ低分子量である。これらのエラストマー、具体的にはポリブタジエンは、より高い音響インピーダンスを持つ。したがって、それらのインピーダンスを増加させるためには、このポリマー材料においては充填シリコンに比べて比較的少量の充填剤を使用する。層に絶縁性粒子を導入することにより概してその硬度が増加するため、より高い音響インピーダンスを有するポリブタジエンを適用することで、第1層に充填シリコンの場合よりも比較的変化の小さな硬度と顕著に低い減衰(好ましくは20MHz未満の周波数において1.5dB/mm未満、20〜25MHzの間の周波数においては2dB/mm未満)を与える。一方、充填シリコンの音響インピーダンスを軟組織のインピーダンスに、例えば1.1MRaylから1.6MRaylへと近づけるためには、より多くの充填剤粒子が必要である。この粒子の導入により顕著な減衰がもたらされ、充填シリコン層の硬度が増す。
【0044】
ZrO2、Al2O3、TiO2、Bi2O3及びBaSO4(金属酸化物種)といった、充填剤であるセラミック粒子(絶縁性粒子)が使用される。セラミック粒子は高絶縁特性を示し、アレイの電子装置にさらなる絶縁性を付与するにあたり有利である。さらに、明確に規定された寸法のセラミック粒子の製造方法が当技術分野で複数開発されている。ポリブタジエン及びZrO粒子が層の総重量の25%を占めるポリブタジエンの層における音波減衰の低減を、図4の曲線85及び84からそれぞれ見ることができる。埋め込まれた絶縁性粒子を有するポリブタジエンは10MHzにおいて2dB/mm未満、5MHzにおいて1dB/mm未満の減衰を示す。
【0045】
ポリブタジエンと同様に、第2層に使用されるポリメチルペンテン(ポリ4−メチルペンテン−1)材料は、第2層の音響インピーダンスの調整の利点をもたらす。ポリメチルペンテン(商品名TPXで三井化学株式会社から入手可能)材料は図4の曲線83で見られるように、縦波の音響減衰が低い。ここで、縦波の減衰はアレイに面するように配置された内面から外面へ伝搬する間の音波の振幅の減少に対応する。TPX材料は比較的低密度であるが、その硬さから比較的高い音波速度(2mm/msec超)を呈する。同様の音波速度を有する他のさらなる緻密なポリマーと比べ、TPXは比較的高い音波速度を有するが、一方で約1.7MRaylの比較的低い音響インピーダンスを示す。しかしながら、既に上に示されているように、TPX材料は横波の減衰が低い。超音波アレイから患者に向かってレンズ13全体にわたり伝搬する放出超音波とは対照的に、横波は音響窓の表面に沿って進み、超音波画質に影響を与えるトランスデューサ間のクロストークを増加させる。第2層のインピーダンスを組織のインピーダンスに近づけることもまた望ましい。
【0046】
ポリオレフィン熱可塑性ポリマー(ポリメチルペンテン)の混合物にポリオレフィンエラストマー(POE)を導入することで、混合物のインピーダンスを(密度を増加させながら)低減することができ、これにより第2層の音響特性を調整することができることが示された。さらに、この混合物はアレイ74内のトランスデューサ要素間のクロストークを有利に低減する、増加した横波の減衰を有することも見出された。したがって、ポリメチルペンテン及びポリオレフィンエラストマーの混合物から形成される第2層42付き音響レンズ13を有する超音波プローブ200は、超音波撮像中の画像アーティファクトの減少を示す。
【0047】
これらのポリマー材料の混合(配合)は、例えば2軸押出機を使用して実施できる。熱可塑性ポリマー及びエラストマーの混合物はいわゆる非相溶性ポリマーブレンド(異種ポリマーブレンド)を表し、これらの2つのポリマーでできている混合物は、混合物を形成している材料に対応する、ガラス転移温度及び融点などの2組の異なる物理特性を呈する。ポリオレフィンエラストマーのさらなる利点はほとんどのオレフィン系材料に適合するということであり、オレフィンは少なくとも1つの二重結合を有する不飽和鎖式炭化水素類のいずれかである。市販されている最も入手しやすいポリオレフィン系エラストマー(POE)は、エチレン−ブテン又はエチレン−オクテンのいずれか一方のコポリマーである。混合により一定体積内での熱可塑性及びエラストマー材料の分布は、異なる材料の独立した島状構造を形成することなく均一になり、前記島状構造は超音波のさらなる散乱源をもたらし得ることに注意されたい。
【0048】
さらなる例において、ポリメチルペンテン材料は別のタイプのエラストマー、熱可塑性エラストマー(TPE)と混合され、これも上述の一般的な熱可塑性物質と同様にほとんど又は全く架橋結合を持たない。熱可塑性エラストマーはコポリマーであってよく、熱可塑性エラストマーの高度な寸法安定性及び弾性可鍛性は2つの異なる種類のポリマーを1つに組み合わせることにより達成される。TPEは、材料が延伸されて伸びを和らげ、より長寿命且つより良い物理的範囲を実現する原型近くに戻ることができるようにする。市販されている最も入手しやすいTPEは、エチレン−ブテン又はエチレン−オクテンのいずれか一方のポリオレフィンコポリマーである。
【0049】
本発明の別の態様において、レンズの第2層はポリメチルペンテンとポリオレフィンエラストマーを形成するコポリマーとの混合物を含む。コポリマーは異なる弾性特性を持つ材料からなるポリマー(2つの異なるモノマー)の物理的混合体である。ポリオレフィンエラストマーのコポリマーは、エチレン及びオクタン又はブテンのようなアルファオレフィンのコポリマーである。アルファオレフィン(α−オレフィン)は化学式C2nのアルケンである有機化合物系で、2重結合を第1位すなわちアルファ(α)位に有することで識別される。別の実施形態において、外層はポリメチルペンテン及びエチレン−オクテンコポリマーの混合物を含む。このコポリマーは商品名EngageでDow Chemicalから入手可能である。
【0050】
エチレン−オクテンコポリマーはそのオレフィンの性質によりポリメチルペンテンと混合するのに適している。このコポリマーは、TPXよりも平均して低い音響インピーダンスとほぼ一桁高い横波減衰性とを呈する。結果として得られるTPX及びエチレン−オクテンコポリマーの混合物は、TPXから比較的高い音波速度と共に低い密度を、コポリマーから低い音響インピーダンス及び高い横波の減衰性を受け継ぐ。それゆえ、TPX及びエチレン−オクテンコポリマーからの混合物を含む改善された外層42を得ることができる。この混合物は音響プローブの窓層に、窓層に起因する画像アーティファクト低減による向上した画質に次いで、耐久性と低音響減衰特性とを与える。
【0051】
表1は以下の様々な材料について測定した音響特性の比較を示す:ポリメチルペンテン(三井化学株式会社 TPX MX0002、1つのポリマー鎖中に4つのモノマーを有する)、ポリオレフィンエラストマー(Engage 8180、1つのポリマー鎖中に4つのモノマーを有する)、及び、ポリメチルペンテン(TPX MX0002)とポリオレフィンエラストマー(Engage 8180)との2つの混合物。ここで混合物中のエラストマーの量は、それぞれ混合物の総重量の15%と20%とである。
【0052】
【表2】
【0053】
Engage 8180は市販で入手できるEngageの種類では最も低い密度を有する。Engage 8180材料は横波の顕著な減衰(17dB/mm超)を示し、さらに2.5MHzにおいて約1.5dB/mmから7.5MHzにおいて5dB/mmまで増加する比較的高い音波減衰も示す。TPX及びEngage 8180の混合物は、それぞれの重量比が85%及び15%であるが、TPXと比べて、約5dB/mmの改善した横波減衰及び7.5MHzにおいて約2.71dB/mmの増加音波減衰と共に、1立方センチメートル当たり0.835グラム(g/cm)の密度の微増を示す。TPX及びEngage 8180(85/15%)混合物の音響インピーダンスは、1.6MRaylまで減少し、TPX材料に比べて、外層42の音響インピーダンスの値が組織のインピーダンスにより近くなる。混合物の横波減衰は混合物中のEngageの重量比を増加させることによりさらに改善(増加)できる。TPX及びEngage 8180のそれぞれの重量比が80%及び20%での混合物の場合、音響インピーダンスがさらに1.58MRaylまで減少し、横波減衰は10dB/mm程度になる。これらの改善は7MHzにおいて約3.12dB/mmの音波減衰エネルギー値の微増により釣り合いがとられる。
【0054】
これらのポリマーの混合は、様々な医用用途に応じて、混合物中のポリマーの重量比を変更することにより混合物の音波速度を変化させる自由度を与える。
【0055】
したがって熱可塑性オレフィン(ポリメチルペンテン)及びポリオレフィンエラストマー(エチレン−オクテンコポリマー)の混合物から形成された第2層42は、音響減衰が小さく、第1層47の人体/ヒト組織により近い低減された音響インピーダンスを呈する。さらに、第2層がレンズ13の外面を形成する際、第2層42は水分の浸透レベルが低く、レンズは消毒剤(通常の医用超音波装置に使用される)に対する耐性が改善する。この特性は、混合物を形成している成分の両方が混合物を非極性にしているオレフィン系であり、それゆえ医用装置に一般に使用される消毒処理法に対して化学的に安定であるという事実によるものである。ポリメチルペンテン混合物から第2層を含むレンズ13はまた、優れた機械特性(衝撃及び摩耗に対する耐性に関して)も示す。
【0056】
得られた混合物の特徴を明らかにするために、示差走査熱量測定及び動的機械分析を実施してもよい。図5は、ポリメチルペンテン(TPX MX0002、曲線61)、重量比がそれぞれ80%/20%(曲線62)及び85%/15%(曲線63)のポリメチルペンテン/ポリオレフィンエラストマー混合物(TPX/Engage 8180)、及びポリオレフィンエラストマー(Engage 8180、曲線64)の示差走査熱量測定曲線を示す。
【0057】
曲線62及び63で見られるように、熱流の温度依存性は摂氏50℃及び225℃の付近に2つの極値点を有する。これはポリメチルペンテンとポリオレフィンエラストマーとの混合物が2つの融点を呈するということを示唆しており、最低温度点はポリオレフィンエラストマー(曲線64と比較)に関連する摂氏30〜70℃の間にある第1の融点(MP1)を表し、最高温度点は熱可塑性ポリマー(曲線61と比較)に関連する摂氏200〜250℃の間にある第2の融点(MP2)を表す。実際に、純粋なEngage 64及びTPX 61の熱流曲線は、ポリオレフィンエラストマー(Engage、64)に対応する摂氏50℃付近及び熱可塑性ポリマー(TPX、61)に対応する摂氏225℃付近にそれぞれ1つの極値点を有する。
【0058】
図6は同じ材料一式に対する動的機械分析曲線を示す。簡略化のため、図5及び図6の両方において同じ参照番号を使用している。混合物の損失弾性率の温度依存性(曲線63及び63)は混合された材料の両方の特性を組み合わせた2つの極値を示す。摂氏−40℃未満の最大値、具体的には摂氏−60℃付近の最大値は、ポリオレフィンエラストマー、具体的にはEngageに対応する第1のガラス転移温度(Tg1)である。摂氏0〜50℃の間の最大値、具体的には摂氏25℃付近の最大値は、熱可塑性ポリオレフィン、具体的にはTPXに対応する第2のガラス転移温度(Tg2)である。純粋なEngage 64及びTPX 61の損失弾性率曲線は、エラストマー(Engage、64)に対応する摂氏−60℃付近及び熱可塑性ポリオレフィン(TPX、61)に対応する摂氏25℃付近にそれぞれ1つの極値点を有する。
【0059】
本発明によると、図3に示すように、超音波アレイ74は少なくとも1つのCMUTセルを含む。そのようなCMUTセルは通常、シリコンウエハなどの基板4上に作製される。この基板は図2のプローブ200の基部4’内に配置される。超音波プローブ200の超音波アレイ74は1つ又は複数のCMUTセル6を含む。CMUTセルは個別に又は互いと組み合わされて作動する。個々のセルは、円形、長方形、六角形、又はその他の周囲形状を有することができる。
【0060】
各CMUTセルはキャビティ8によって離間される少なくとも1対の電極7及び7’を有する。キャビティ8は基板4の上面によって形成されるセルフロア31の上に浮かせてある膜5の間に形成されている。膜5は、窒化シリコンでできており、移動又は振動するように適合されている。複数の支持部9(図2においては2つの支持部9が示されている)を介してセルフロア31(又は基板)の上に浮かせることができる。電極7、7’は金属などの導電性材料でできている。下部電極7はセル31のフロア内に埋め込まれ、一方、上部電極7’は膜5の中に埋め込まれる。電極7及び7’は追加の層としてセルフロア31又は膜5の上に成膜されてもよい。下部電極7は通常キャビティに面する表面上で追加の層(図示せず)と共に絶縁される。この絶縁層は酸化物−窒化物−酸化物(ONO:oxide−nitride−oxide)の誘電層、酸化シリコン層、及び酸化アルミニウム層又は酸化ハフニウム層の1つ又は組み合わせを含むことができる。絶縁層は下部電極7の上及び膜電極7’の下に形成される。ONO誘電層は、装置の不安定性、音響出力圧のドリフト及び減少につながる電極の電化蓄積を有利に減らす。支持部9は酸化シリコン又は窒化シリコンなどの絶縁材料からできている。キャビティ8は空気又はガスが充填されるか、完全に又は一部を真空にすることができる。キャビティ8によって離間される2つの電極7及び7’は静電容量を示す。電極7及び7’に結合された駆動回路45を通した電気信号の使用により、膜5の機械的運動/振動を起こし、この運動/振動は結果として静電容量を変化させ、関連するCMUTトランスデューサ集積回路によって操作することができる。駆動回路45は超音波アレイの集積回路の集積部として実装することができる。駆動回路45は通常、交流信号電圧源及び直流電圧源、並びにこれらの電圧源に関連付けられている回路を含む。
【0061】
従来のPZT系のトランスデューサは通常平行六面体形状を有し、その面の少なくとも1つは音波の伝送中にピストンのような動きで振動するように適合されている。振動中(作動中)の面の変位は表面全体にわたり均一である。
【0062】
一方、CMUTの振動している膜は膜の領域(表面)全体にわたって様々な変位を有する。従来の作動モードにおいて、膜の変位はCMUTセルの中央部で最も高く、膜の周囲部で最も低い。つぶれ作動モードにおいて、図8に示すように、CMUTセル6の膜5はセルフロアに部分的に接触しており、これにより従来の作動モードに比べて最大の膜変位(D)を示す結果となる。CMUTの作動中は、膜46の中央部はつぶれ直流電圧値を印加することによりセルフロアに接触させられる、すなわちつぶされる(直流電圧は駆動回路45により供給される)。駆動回路45によって供給されて印加された交流信号電圧は、膜の浮いている部分43(膜の周囲部に位置する)を電極7と7’との間で印加電気信号の下、運動/振動させる。技術の観点から、つぶれた膜を有するCMUTは原則として従来の任意のやり方で製造することができ、そのやり方はCMUTに膜を設けること、膜をつぶれ状態にさせるために電気(バイアス電圧)又は圧力などの様々な手段を適用することを含む。つぶれ作動モードにおいて、膜の中央部の変位Dは固定され、一方、膜の浮いている部分は振幅dで振動するが、これは与えられたCMUTセル設計用の交流電圧信号によって決定される。
【0063】
膜の振動部分の変位の変動は、作動しているCMUTトランスデューサの音響結合を改善するために、CMUTアレイに音響結合されたレンズ層に様々な要件を課す。CMUTと音響接触を形成する層はその内面を膜の変位に適合させる必要がある。比較的低硬度(60ShoreA硬度未満、好ましくは、50ShoreA硬度未満)で比較的低分子量のポリブタジエンは、音響窓層13と振動するように適合されたCMUTの膜との間の音響接触を改善する。さらに、内層を形成している材料の音波の低減衰性により、レンズ13全体にわたり音波伝送が改善される。
【0064】
本発明の音響レンズは、ポリブタジエンなどの炭化水素系から選択されるポリマー材料を含む熱硬化性エラストマー及びそこに埋め込まれた絶縁性粒子を含む第1層47と、ポリメチルペンテンなどの熱可塑性ポリオレフィン(TPO)及び音響インピーダンスの調整のためにそこに混合されるポリオレフィン系から選択されるエラストマー(POE)を含む第2層42とを含む。
【0065】
CMUTアレイは、好ましくは、CMUTセル6に結合された少なくとも1つの駆動回路45を含むことによりつぶれモードで作動するように配置され、(a)少なくとも1つのCMUTセルの第1電極7及び第2電極7’に直流電圧を印加することにより、膜5を、膜5が基板4までつぶされるつぶれ状態にさせるよう適合され、(b)少なくとも1つの前記CMUTセルの第1及び第2電極に交流電圧を印加することによりCMUTセルを作動させるように適合されている。
【0066】
このモードにおいて、CMUT超音波アレイは印加される直流電圧を変化させることにより様々な周波数で超音波音響を送信又は受信し、引き換えにそれに膜5の基板4との接触領域を変化させる。直流電圧が大きければ大きいほど、つぶれモードの接触領域は大きくなり、CMUTセルの共振周波数が高くなる。したがって、PZT系アレイに比べ、CMUT系超音波アレイは、広い範囲の周波数に対して改善された音波伝搬を実現するためにレンズ13に追加要件を課し、CMUT超音波アレイはその周波数範囲において作動するように適合されている。それゆえ、広帯域の作動周波数内で音波減衰の低減を示す第1層47及び第2層42の両方を有することが望ましい。
【0067】
図7は様々な材料の層に音響結合されたCMUT超音波アレイに対する、0から35MHzまでの周波数範囲における出力圧力(MPa)を示す。曲線65はPZT用途で一般的な、厚さ1.2ミリメートルの充填シリコンゴム(RTV)が上に重なった超音波アレイに対応する。図に見られるように、シリコンゴム層はこの周波数範囲においてはCMUTアレイに対する性能が低く、低出力圧力で5MHz付近において最大値の1.5MPaに到達することを示し、7MHz超の周波数において充填シリコンゴムは音響信号の強い減衰を呈する。厚さ30マイクロメートルのポリブタジエン材料(曲線67)を含む第1層が上に重なっているCMUTアレイは、出力圧力が3.5MPa程度の高さに到達する超広帯域幅を示す。曲線66はポリブタジエンにより形成された第1層47(厚さ30マイクロメートル)及び厚さ200マイクロメートルであるポリメチルペンテンによって形成された第2層42の両方を含む音響窓層13に対応する。このアレイに対する出力圧力は2.5MPaの高さまで到達し、7から22MHzの広い周波数範囲においては2MPaを超える。したがって、本発明により収束音響レンズは、音波伝送が改善され、広周波数帯域幅が与えられ、低音波減衰という特徴と、高耐久性で洗浄可能なレンズ13の外面71とを併せ持つ。
【0068】
第1層及び第2層の音響特性は、混合物の成分の埋め込み絶縁粒子の重量比を変化させることでさらに調節できる。図9は、本発明において実施することができる、音響インピーダンスの整合の例を示す。曲線68は中に埋め込まれた25%のZrO粒子を含むポリブタジエンの第1層を通り抜ける音響エネルギーに対するミリメートル当たりの音響損失(dB)の音響周波数依存性を示し(黒丸が測定データを示す)、69はポリメチルペンテンと20%のEngageとの混合物を含む第2層を通り抜ける音響エネルギーに対する音響損失の同様の依存性を示す(黒四角が測定データを示す)。両方の層が7MHz未満の周波数に対しては3dB/mm未満の損失を示し、該周波数範囲は超音波診断用途における一般撮像用の領域を含む。ポリブタジエン中のZrO粒子の比率は、ポリメチルペンテン混合物におけるEngageの比率に関連し、両層の音響インピーダンスは同じ約1.6MRaylとなる。これにより第1及び第2層の間には中を通って進む音響エネルギーに対して実質的に境界がなくなる(同じインピーダンス値により)。したがって、レンズ層の境界における音波の反射は最小限に抑えられる。25%のZrOを含むポリブタジエンの密度の値は約1.09g/cmで、音波速度は約1470m/s、20%のEngageを含むポリメチルペンテン混合物の密度の値は約0.8g/cm、音波速度は約1900m/sである。本実施形態に従うレンズの第1層の凸面40の必要な曲率半径を計算することができる。通常の焦点距離5cmに対して式(1)から(3)を参照する1次近似(5MHzにおいて波長はこの材料中で0.3mm)においてレンズ13の屈折率は1.29であり、凸面40の曲率半径は1.5cm、第1層の最大厚さは1.5mmである。最大厚さ(t)及び曲率半径(R)はアレイの大きさ(プローブの開口寸法)と共に変化する。
【0069】
図10は上記の例に従って構成されたレンズに対する広範囲の周波数における全音波分析(プローブによって生成されたパスカル単位の空間圧力分布)である。レンズの総厚は2mmで、そのうち1.5mmは第1層の最大厚さである。ポリブタジエンの第1層の凸状面の曲率半径は1.3cmである。レンズがない場合、このアレイの本来の焦点は約1.7cmである。アレイにレンズを適用することにより、集束を強化し、焦点は2.5cmの長距離へとシフトする。レンズの総厚を増加することにより(減衰の増加を犠牲にして)集束をさらに改善する。例えば、同じ1.3mmの曲率半径を用いた認められている減衰レベルにおいて、より厚いレンズは焦点を3.0〜3.5cmに移動させることができ、上で論じた1次近似に近づく。
【0070】
CMUT系アレイの一般的な用途として、介入超音波プローブ又は人体パッチ上などの超音波撮像系使い捨て製品がある。これらの用途には滅菌に関してより厳しい要件がある。熱可塑性ポリマーポリメチルペンテン及びそこに混合されるポリオレフィン系から選択されるエラストマー(POE)を含む第2層を適用することにより、音響レンズの集束機能を有効にすることができ、一方で該レンズに機械的及び化学的安定性を与え、そのようなレンズを有する超音波装置を一般的な化学物質を用いた滅菌に適したものにすることもできる。
【0071】
本発明のさらなる利点は、示唆された層材料が成型可能であることであり、超音波プローブの工業的な製造により簡単に適合することができる。
【0072】
図11において、本発明に従う音響レンズを含む超音波アレイの製造方法20が示されている。予備重合済みのポリブタジエン38(CLanxessのCB728T)の顆粒がステップ31において提供される。ステップ32において、ブロックは顆粒化され、例えばヘキサン、ヘプタン、シクロヘキサンなどのアルカン、分岐アルカン、環状アルカンのような溶媒の中で溶解する。ステップ33において、第1層の音響インピーダンスの最適化は、溶媒に絶縁性粒子を加えることで実現でき、ポリマー材料は粒子に対して分散剤として作用し、ポリマー材料と絶縁性粒子との液体混合物が提供されることになる。脂肪酸(脂肪族鎖を有するカルボン酸で、飽和又は不飽和のいずれか)のようなさらなる分散剤が液体混合物に追加される。液体混合物の中の充填剤粒子により、音響窓の内層の硬度が増し、一方で脂肪酸は比較的一定値で第1層の平均硬度を維持して硬度上昇に対抗する。オレイン酸、リノール酸、リノレン酸のような脂肪酸の不飽和鎖(1つ、2つ及びそれぞれ分岐した二重炭素結合)は、重合してポリブタジエン鎖に結合することができる。これにより液体混合物中の粒子の分散/分布が良くなる。ステップ54において、集積回路に結合された少なくとも1つのCMUTセル付き超音波アレイを有するチップが提供される。ステップ34において、チップが液体混合物に浸され、液体混合物を含む層がCMUTセルの上に重なるようになる。ステップ33において、液体混合物と伝播媒質との間のインピーダンスの不一致を最小限にすることができるので、液体混合物層の厚さ変動に対する耐性がやや高い。浸漬時間を延長すると液体混合物層の厚さが増す。この段階において、第1層の外面の望ましい曲面形状が導入される。ステップ35において、液体混合物層を有するチップは約70℃の高温において乾燥させられる。時間と共に、溶媒が液体混合物から蒸発し始めると、液体混合物層はより硬くなる(粘着性が増す)。この段階において、中にポリオレフィンエラストマーが混合されたポリオレフィン熱可塑性物質の第2層は、液体混合物層に適用する。このステップの利点は、第2層を接着剤なしで第1層に結合することができるということである。
【0073】
熱可塑性ポリオレフィンの混合物中のポリオレフィンエラストマーの好ましい重量比は、40%未満である。中にポリオレフィンエラストマー(Engage)が混合されたポリメチルペンテン(TPX)について説明している実施形態に対しては、40%を超えるエラストマーの重量比の増加により、外層における減衰が高くなりすぎる。低下した音響インピーダンス、減少した横波伝搬、及び増加した音波減衰の間の最適なバランスは、40%未満の場合に達成される。熱可塑性ポリオレフィン混合物中のポリオレフィンエラストマーの好ましい重量比は10%〜30%の間、具体的には15%〜20%の間である。両方の混合物成分及び粒子の選択された重量比の正確な値は超音波アレイの医用用途次第である。例えば、低周波数用途(5MHz未満)に対しては、レンズの減衰が2dB/mmで保持されるので、ポリオレフィンエラストマーに対しては粒子が20〜25%及び約25〜30%の比較的高い重量比が選択される。高周波数領域において(5MHzから10MHzの間)、減衰を2dB/mm未満に保つため、混合物中のポリオレフィンエラストマーの重量比は、例えば約15%〜20%の低い比率が選択される。
【0074】
さらに、ステップ36において、CMUTセルの上に重なっている層は、液体混合物層から残存溶媒を蒸発させるのに十分な温度(約100℃、ヘプタンの場合)において硬化する。
【0075】
この方法は、ステップの単純さと超音波アレイの性能の大きな耐性とにより、工業規模で音響層の厚みに有利に適用することができる。各層の厚みは浸漬34及び乾燥36のステップを繰り返すことで増加させることができる。ステップ33及び35におけるインピーダンス最適化の可能性により、炭化水素材料の低減衰特性、音響窓層の平均値からの局所的な厚み偏差は、一般に使用されているスプレー又はスピンコート製造において認められている標準よりも大きくなり得る。これに加えて、この製造方法はアレイ中で実装される様々なチップ設計及び電気接点接合に自由度を与える。
【0076】
本方法は様々なチップサイズ、特に介入装置やカテーテルなどの面積が小型化された超音波アレイにおいても有利に使用することができる。
【0077】
図12は超音波撮像システム202の原理設計を示す。
【0078】
超音波撮像システムは概して参照番号202で示されている。超音波撮像システム202は、例えば患者201などの、物体の面積又は体積を走査するために使用される。超音波システム202は、例えば動物や他の生物の体の部位など、他の面積や体積を走査するためにも使用されることを理解されるべきである。
【0079】
患者201を走査するために、超音波プローブ200が提供される。示した実施形態において、超音波プローブ200はコンソール装置203に接続される。コンソール装置203はモバイルコンソールとして図12に示されている。しかしながらこのコンソール203は、据え置き装置としても実現される。コンソール装置203は形成された界面206を通してプローブ200に有線で接続される。さらに、コンソール装置203はまた、例えばUWB伝送技術を用いて、無線でもプローブ200に接続されることが想定される。コンソール装置203はさらに入力装置205を含む。入力装置は、ボタン、キーパッド及び/又はタッチスクリーンを有して超音波撮像システム202の使用者に入力機構を提供する。これに加えて又はこれに代えて、入力装置205内に他の機構が存在して使用者が超音波撮像システム202を制御できるようにする。
【0080】
さらに、コンソール装置203はディスプレイ204を含んで超音波撮像システム202によって生成されたデータを使用者に対して表示する。これにより、超音波プローブ200を介して走査された患者201の体積はコンソール装置203上で超音波撮像システム200の使用者が見ることができる。
【0081】
超音波プローブ200は本発明に従って構成されたCMUTトランスデューサアレイを含む。
【図1】
【図2】
【図3】
【図4】
【図5】
【図6】
【図7】
【図8】
【図9】
【図10】
【図11】
【図12】
【国際調査報告】