(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】2019522329
(43)【公表日】20190808
(54)【発明の名称】電極、電極を有する電気化学エネルギー蓄積器、および電極を製造する方法
(51)【国際特許分類】
   H01M 4/13 20100101AFI20190712BHJP
【FI】
   !H01M4/13
【審査請求】有
【予備審査請求】未請求
【全頁数】14
(21)【出願番号】2019502678
(86)(22)【出願日】20170706
(85)【翻訳文提出日】20190118
(86)【国際出願番号】EP2017000801
(87)【国際公開番号】WO2018014997
(87)【国際公開日】20180125
(31)【優先権主張番号】102016008918.0
(32)【優先日】20160721
(33)【優先権主張国】DE
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】598051819
【氏名又は名称】ダイムラー・アクチェンゲゼルシャフト
【氏名又は名称原語表記】Daimler AG
【住所又は居所】ドイツ連邦共和国 70327 シュツットガルト、メルセデスシュトラーセ 137
【住所又は居所原語表記】Mercedesstrasse 137,70327 Stuttgart,Deutschland
(74)【代理人】
【識別番号】100101856
【弁理士】
【氏名又は名称】赤澤 日出夫
(72)【発明者】
【氏名】ヒンテンナッハ,アンドレアス
【住所又は居所】ドイツ連邦共和国 71691 フライベルク,ブルグンダーシュトラーセ 9
【テーマコード(参考)】
5H050
【Fターム(参考)】
5H050AA01
5H050BA16
5H050CA11
5H050CB12
5H050DA02
5H050DA16
5H050EA12
5H050EA22
5H050FA02
5H050GA22
(57)【要約】
本発明は、触媒層(2.2)を有する電気化学エネルギー蓄積器(1)のための電極(2)に関し、導電性マトリクスと、導電性マトリクスにインターカレートされた化学活性材料とを含んでいる。本発明によると、触媒層(2.2)が、少なくとも1つの金属酸化物とメチオニンを含む保護コーティング(2.3)を付与されていることが意図される。さらに本発明は、少なくとも1つのこのような電極(2)を含む電気化学エネルギー蓄積器(1)、およびこのような電極(2)を製造する方法に関する。
【特許請求の範囲】
【請求項1】
触媒層(2.2)を有する電気化学エネルギー蓄積器(1)のための電極(2)であって、
導電性マトリクスと、
前記導電性マトリクスにインターカレートされた化学活性材料とを含んでおり、
前記触媒層(2.2)が、少なくとも1つの金属酸化物とメチオニンとを含む保護コーティング(2.3)を付与されていることを特徴とする電極。
【請求項2】
前記保護コーティング(2.3)は前記触媒層(2.2)を全面的に包囲することを特徴とする、請求項1に記載の電極(2)。
【請求項3】
前記保護コーティング(2.3)は2層で構成されており、メチオニンを含むメチオニン層(2.3.1)と、少なくとも1つの金属酸化物を含む金属酸化物層(2.3.2)とを含むことを特徴とする、請求項1または請求項2に記載の電極(2)。
【請求項4】
前記メチオニン層(2.3.1)は前記触媒層(2.2)の上に析出されることを特徴とする、請求項3に記載の電極(2)。
【請求項5】
前記金属酸化物層(2.3.2)は前記メチオニン層(2.3.1)の上に析出されることを特徴とする、請求項3または請求項4に記載の電極(2)。
【請求項6】
前記金属酸化物層(2.3.2)は酸化アルミニウム層として構成されることを特徴とする、請求項1〜請求項5のいずれか一項に記載の電極(2)。
【請求項7】
請求項1〜請求項6のいずれか一項に記載の少なくとも1つの電極(2)と、
少なくとも1つのカウンター電極(3)とを含んでいる電気化学エネルギー蓄積器(1)。
【請求項8】
少なくとも1つの前記電極(2)はカソードとして構成されており、少なくとも1つの前記カウンター電極(3)はアノードとして構成されていることを特徴とする、請求項7に記載の電気化学エネルギー蓄積器(1)。
【請求項9】
請求項1〜請求項6のいずれか一項に記載の電極(2)を製造する方法において、
前記電極(2)の触媒層(2.2)を構成するために化学活性材料が導電性マトリクスへインターカレートされ、
前記触媒層(2.2)が少なくとも1つの金属酸化物とメチオニンとを含む保護コーティング(2.3)を付与される方法。
【請求項10】
次の各ステップすなわち、
基材の上に前記触媒層(2.2)が塗布されること、
メチオニンが粉末形態で準備されること、
金属含有の前駆化合物とカウンター化合物とが準備されること、
前記触媒層(2.2)の上での粉末状のメチオニンの析出によって前記メチオニン層(2.3.1)が構成されること、
前記メチオニン層(2.3.1)の上での金属含有の前駆化合物の少なくとも1つの層の析出によって、およびこれに続く、析出された金属含有の前駆化合物へのカウンター成分の塗布によって前記金属酸化物層(2.3.2)が構成されること、を含む請求項9に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特許請求の範囲における請求項1の前段に記載されている電気化学エネルギー蓄積器のための電極に関する。さらに本発明は、このような電極を有する電気化学エネルギー蓄積器に関する。さらに本発明は、このような電極を製造する方法に関する。
【背景技術】
【0002】
電気化学エネルギー蓄積器のための電極は、従来技術から知られている。たとえば特許文献1には、硫黄ベースの活性材料からなる粒子と、硫黄ベースの活性材料からなる粒子をカプセル封じする炭素コーティングとを含む、リチウム・硫黄電池のための正極が記載されている。さらに正極は、炭素コーティングの表面に形成される構造コーティングを含んでいる。構造コーティングは、金属酸化物複合素材からなる構造化コーティング、混合された炭素複合材料と金属酸化物複合材料とからなる構造コーティング、およびポリマー構造コーティングからなる群から選択される。
【0003】
さらに特許文献2には、固体リチウムを含むアノードと、金属酸化物コーティングを有する硫黄化合物を含むカソードとを含むリチウム・硫黄電池が記載されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】独国特許出願公表第11 2014 003 358 T5号明細書
【特許文献2】独国特許出願公開第10 2013 222 145 A1号明細書
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の課題は、従来技術に比べて改良された電極、改良された電気化学エネルギー蓄積器、およびこのような電極を製造するのに適した方法を提示することにある。
【課題を解決するための手段】
【0006】
電極に関して、この課題は本発明に係る特許請求の範囲における請求項1に記載の構成要件によって解決される。電気化学エネルギー蓄積器に関して、この課題は本発明に係る特許請求の範囲における請求項7に記載の構成要件によって解決される。方法に関して、この課題は本発明に係る特許請求の範囲における請求項9に記載の構成要件によって解決される。
【0007】
本発明の好ましい実施形態は特許請求の範囲における従属請求項の対象である。
【0008】
触媒層を有する電気化学エネルギー蓄積器のための電極は、導電性マトリクスと、導電性マトリクスにインターカレートされた化学活性材料とを含んでいる。導電性マトリクスは、たとえば多孔性で機械的に柔軟な炭素構造である。そのために、たとえば良好な導電性をそれぞれ有するグラファイトやすすを使用することができる。化学活性材料としては、たとえば硫黄を導電性マトリクスへインターカレートすることができる。ここで化学活性材料とは、電極の作動時に、特に電極を含む電気化学エネルギー蓄積器の作動時に、酸化または還元される材料を意味する。
【0009】
本発明に係る触媒層は、少なくとも1つの金属酸化物とメチオニンとを含む保護コーティングを付与されることが意図される。
【0010】
保護コーティングによって、化学活性物質が導電性マトリクスから溶出しないように保護される。導電性マトリクスからの化学活性材料の溶出は、電気化学エネルギー蓄積器の放電プロセス中に起こることがあり、その場合、先行する充電プロセスでたとえば元素硫黄へと完全に単体化されなかった可能性がある化学活性材料の短鎖および/または長鎖のポリ化合物、特にポリスルフィドが触媒層から外れ、電解質を介してカウンター電極へと移動する。カウンター電極でこのポリ化合物がカウンター電極の化学活性材料と、たとえばリチウムと反応し、その際に、電気化学エネルギー蓄積器のキャパシタンスおよびこれに伴って耐用寿命を著しく引き下げる層を形成する可能性がある。そのうえ、電極の導電性マトリクスに組み込まれた化学活性材料は順次分解されていき、電極とカウンター電極の間の短絡の危険が有意に増していく。
【0011】
このとき、メチオニンと少なくとも1つの金属酸化物とを含む保護コーティングは、たとえばリチウムイオンなどの特定のイオンについてのみ透過性であるが、電極の化学活性材料のポリ化合物については、たとえばポリスルフィドについては透過性でない。それに伴い、電極と協同作用するカウンター電極のたとえばリチウムなどの化学活性物質だけが保護コーティングを通過することができ、電極の化学活性材料は電極の触媒層にとどまることが保証される。
【0012】
2−アミノ−4−メチルメルカプト酪酸としても知られるメチオニンは、硫酸を含むタンパク質構成アミノ酸であり、その特別に良好な化学的安定性から、保護コーティングの部分として電極で使用するのに適している。少なくとも1つの金属酸化物、たとえば酸化アルミニウムは、たとえばアルミニウムなどの金属元素の酸素化合物であり、電気絶縁性の特性を有する。このとき少なくとも1つの金属酸化物はイオン選択的に構成され、たとえばリチウムイオンなどの特定のイオンについて透過性である。このことは、3.5マイクロメートル超の層厚で、2マイクロメートル未満の気孔サイズを設定することによって可能となる。さらに金属酸化物層は、電極とカウンター電極との間でのカウンター電極の化学活性材料の伝達媒体として配置される電解質に対して化学的に安定である。保護コーティングの半透過性に基づき、電解質は少なくとも部分的にその中に侵入する。メチオニンと金属酸化物はいずれも電解質の影響のもとでほぼ化学的に安定するので、電気化学エネルギー蓄積器の作動時に、保護コーティングの機能が維持されたまま保たれる。
【0013】
保護コーティングは触媒層を完全に包囲するように構成されるのが好ましい。それにより保護コーティングは、導電性マトリクスからの化学活性材料の溶出に対する全面的な保護を提供する。これに加えて保護コーティングは、触媒層が塗布されている基材を一緒に包囲することもできる。
【0014】
1つの実施形態では、保護コーティングは2層で構成されており、メチオニンを含むメチオニン層と、少なくとも1つの金属酸化物を含む金属酸化物層とを含んでいる。2つの別個の層を有する保護コーティングの構成は、両方の層の化学的な安定性に基づき、導電性マトリクスからの化学活性材料の溶出に対する触媒層の最善の保護を可能にする。さらにメチオニン層により、金属酸化物層の層厚を従来技術に比べて縮小することができ、それにより金属酸化物層の電気絶縁特性が制限されて、たとえば還元プロセスと酸化プロセスの低下などの、大きすぎる層厚のマイナスの影響が低減される。
【0015】
メチオニン層は触媒層の上に析出され、そのようにして、触媒層の表面に直接配置される下側または内側の層を形成するのが好ましい。金属酸化物層はメチオニン層の上に析出されて、上側または外側の層を形成する。このとき両方の層はいわゆるインサイチュコンポジットの形態で相互に結合され、それにより、少なくとも各層の接する領域で(インサイチュ)架橋が行われる。
【0016】
金属酸化物層は酸化アルミニウム層として構成されるのが好ましい。この層に含まれる酸化アルミニウムは、たとえばナノ粒子の形態で存在する。酸化アルミニウムは特に迅速な液体吸収性、高い多孔性、良好な機械的強度、および熱負荷のもとでの非常に低い収縮傾向という特徴がある。
【0017】
さらに、上に説明した本発明に係る少なくとも1つの電極またはこの電極の1つの実施形態と、少なくとも1つのカウンター電極とを含む電気化学エネルギー蓄積器が意図される。たとえば少なくとも1つの電極はカソードとして構成され、少なくとも1つのカウンター電極はアノードとして構成される。このとき電気化学エネルギー蓄積器は、セル複合体のための個別セルとして構成されるか、または、複数の個別セルを有するセル複合体として構成される。たとえば電気化学エネルギー蓄積器は、カソードの活性材料として硫黄が用いられ、アノードの活性材料としてリチウムが用いられるリチウム・硫黄電池として構成される。別案として電気化学エネルギー蓄積器は、たとえばナトリウム・硫黄電池など、それ以外の金属・硫黄電池として構成されていてもよい。
【0018】
この電気化学エネルギー蓄積器が従来の電気化学エネルギー蓄積器に比べて改良されている理由は、保護コーティングに基づき、電極の触媒層からの化学活性材料の溶出が回避され、または少なくとも低減されるからである。このことは、電気化学エネルギー蓄積器のいっそう長い耐用寿命を好ましい形で可能にする。
【0019】
上述した本発明に係る電極を製造する方法またはこの電極の1つの実施形態では、電極の触媒層を構成するために化学活性材料が導電性マトリクスへインターカレートされ、少なくとも1つの金属酸化物とメチオニンとを含む保護コーティングが触媒層に付与される。
【0020】
この方法により、化学活性材料の量が従来の電極に比べて長期間にわたり一定に保たれる、従来の電極に比べて改良された電極を製造することができる。したがって、この電極を含むエネルギー蓄積器を耐用寿命と機能に関して最適化することができる。
【0021】
1つの実施形態では、電極の製造のために次の各ステップが実行される。第1のステップでは、触媒層が基材に塗布される。さらに、粉末形状のメチオニンが準備され、触媒層の上での粉末状のメチオニンの析出によってメチオニン層が構成される。さらに、金属含有の前駆化合物とカウンター化合物が準備される。次いで、メチオニン層の上での金属含有の前駆化合物の少なくとも1つの層の析出によって、およびこれに続く、析出された金属含有の前駆化合物へのカウンター成分の塗布によって、金属酸化物層が構成される。
【0022】
メチオニン層の析出、および金属酸化物層の析出は、電極の化学活性材料の溶融温度を下回る温度でそれぞれ行われる。メチオニンの析出は、たとえば室温で、すなわち約25℃の温度で行われる。メチオニン層の析出のために、粉末状のメチオニンが触媒層の上でできる限り均等に分散される。析出は、たとえば静電式の析出または粉末析出によって行うことができる。金属酸化物層の析出は、たとえば原子層析出によって80℃〜100℃の間の温度で行われる。このような温度は、127℃である硫黄の溶融温度を下回る。それに伴い、硫黄含有の電極のケースにおいて、触媒層にインターカレートされた硫黄が析出時に作用を受けることがない。
【0023】
保護コーティングの絶対的な気孔サイズ、気孔の分布、および絶対的な層厚は個別に設定することができる。
【0024】
次に、本発明の実施形態について図面を参照しながら詳しく説明する。
図面は次のものを示す。
【図面の簡単な説明】
【0025】
【図1】電極とカウンター電極とを有する電気化学エネルギー蓄積器の一実施形態を模式的に示す断面図である。
【図2】電気化学エネルギー蓄積器のための電極を製造する方法の一例としての進行手順を模式的に示す図である。
【発明を実施するための形態】
【0026】
互いに対応する部分には、いずれの図面においても同じ符号が付されている。
【0027】
図1は、たとえばリチウム・硫黄バッテリなどの充電可能なバッテリのための個別セルとして構成される、電気化学エネルギー蓄積器1の縦断面を模式的に示す。
【0028】
電気化学エネルギー蓄積器1は電極2とカウンター電極3とを含んでおり、電極2はカソードとして構成され、カウンター電極3はアノードとして構成される。電極2とカウンター電極3との間に、イオン伝導性の電解質4が配置されている。さらに電極2とカウンター電極3との間には、イオン伝導性のセパレータ5が配置されている。
【0029】
電極2は、触媒層2.2を備える基材2.1を含んでいる。基材2.1は電気絶縁性材料から形成され、たとえばポリカーボネートを含む。触媒層2.2は複合材料として構成され、導電性マトリクスと化学活性材料とを含む。
【0030】
導電性マトリクスは導電性で多孔性の機械的に柔軟な炭素構造、たとえばグラファイトやすすから形成される。導電性マトリクスの中に、ここでは硫黄化合物、特に硫黄を含む化学活性材料がインターカレートされている。
【0031】
カウンター電極3は、触媒層3.2を備える基材3.1、たとえばポリカーボネートを同じく含んでいる。触媒層3.2はここでも複合材料として構成され、導電性マトリクスと化学活性材料とを含んでいる。カウンター電極3のための導電性マトリクスは、たとえば導電性の炭素構造とシリコン構造とで形成される。化学活性材料は、ここではリチウムまたはリチウム合金である。
【0032】
電解質4は、非水性溶剤およびその中に溶けたリチウム塩が中に含まれる、液体の非水性電解液を含んでいる。セパレータ5は、たとえばマイクロポアセラミック、マイクロポアポリマーフィルム、またはマイクロポアガラス繊維不織布から形成される、たとえば半透過性の、特にイオンについて透過性の隔膜として構成される。
【0033】
電極2およびカウンター電極3の化学活性材料は、電極2またはカウンター電極3の全体にわたって均一に、その導電性マトリクスの中へ組み込むことができる。このとき化学活性材料は、特に電気化学エネルギー蓄積器1の充電プロセスと放電プロセスのときに、以下においてリチウム・硫黄バッテリを例にとって詳しく説明する通り、電極2とカウンター電極3との間で進行する化学反応に利用される。
【0034】
電気化学エネルギー蓄積器1が放電されるとき、カウンター電極3にインターカレートされたリチウムが酸化されてリチウムイオンと電子になる。リチウムイオンは電解質4を通って電極2へと移動し、それと同時に、電子を外部の電気回路Sを介してカウンター電極3から電極2へと伝達することができる。このとき外部の電気回路Sには、電子流によってエネルギーの供給を受けるエネルギー消費部6が配置されている。電極2では、リチウムイオンが還元反応によって受け取られ、その際に硫黄が硫化リチウムへと還元される。電気化学エネルギー蓄積器1が放電するときの電気化学反応は次のように記述することができる。
【0035】
カウンター電極3:Li→Li+eおよび
電極2:S+2Li+e→Li→Li→Li→Li→Li
【0036】
電気化学エネルギー蓄積器1が充電されるときには、電極2とカウンター電極3とにエネルギー源(図示せず)が接続される。このとき電極2では硫化リチウムに由来するリチウムが酸化されてリチウムカチオンと電子になり、リチウムカチオンは電解質4を介して、また電子は外部の電気回路Sを介して、それぞれカウンター電極3へと戻るように移動する。
【0037】
電気化学エネルギー蓄積器1の充電時における化学活性材料、即ちたとえばリチウムイオンの蓄積、および電気化学エネルギー蓄積器1の放電時における化学活性材料の放出は、周知の通り、電極2とカウンター電極3との非常に大きな容積変化をもたらす。このことは、電極2またはカウンター電極3の「呼吸」とも呼ばれる。
【0038】
電気化学エネルギー蓄積器1が放電されるとき、先行する充電プロセスにおいて電極2で完全に元素硫黄へと転換されなかった可能性のある短鎖ポリスルフィド、たとえばLi、および/または長鎖ポリスルフィド、たとえばLi、Liなどが、電極2の触媒層2.2から出るように拡散し、これは電解質4に溶けないため、電解質4を介してカウンター電極3へと移動する可能性がある。カウンター電極3でポリスルフィドによって硫化リチウム層が形成される可能性があり、これが電気化学エネルギー蓄積器1のキャパシタンスおよびこれに伴って耐用寿命を著しく低下させる。さらには、電極2の導電性マトリクスに組み込まれた化学活性材料が順次分解されていき、電極2とカウンター電極3との間の短絡の危険が有意に増していく。
【0039】
電極2からの化学活性材料の溶出を防止または少なくとも低減するために、触媒層2.2には、以下に詳しく説明する保護コーティング2.3が付与される。
【0040】
保護コーティング2.3は2部分で構成されるのが好ましく、メチオニンを含むメチオニン層2.3.1と、少なくとも1つの金属酸化物を含む金属酸化物層2.3.2とを含んでいる。このときメチオニン層2.3.1は触媒層2.2の上に直接析出され、そのようにして保護コーティング2.3の下側または内側の層を形成する。
【0041】
メチオニン層2.3.1に含まれるメチオニンは、硫黄含有のタンパク質構成アミノ酸であり、2−アミノ−4−メチルメルカプト酪酸としても知られ、その特別に良好な化学的安定性に基づき、保護コーティング2.3の一部として電極2で使用するのに適している。
【0042】
金属酸化物層2.3.2はメチオニン層2.3.1の上に析出されて、保護コーティング2.3の上側または外側の層を形成する。たとえば金属酸化物層2.3.2は酸化アルミニウム層として構成される。金属酸化物層2.3.2は金属の酸素化合物であり、電気絶縁性の特性を有する。さらに金属酸化物層2.3.2はイオン選択的に構成されており、カウンター電極3のイオンについて、たとえばリチウムイオンについて透過性である。このことは、3.5マイクロメートル超の層厚と2マイクロメートル未満の金属酸化物層2.3.2の気孔サイズを設定することによって可能となる。さらに金属酸化物層2.3.2は、電解質4に対して化学的に安定である。それが特に好ましい理由は、金属酸化物層2.3.2の半透過性に基づき、電解質4が少なくとも部分的に金属酸化物層2.3.2とメチオニン層2.3.1の中に侵入するからである。
【0043】
メチオニン層2.3.1および金属酸化物層2.3.2はいずれもカウンター電極3の化学活性材料について透過性であるが、電極2の化学活性材料については不透過性である。特にメチオニン層2.3.1と金属酸化物層2.3.2は、ポリスルフィド化合物について不透過性である。
【0044】
メチオニン層2.3.1と金属酸化物層2.3.2の間の境界面では、これらが相互に架橋しており、それにより、メチオニン層2.3.1と金属酸化物層2.3.2はいわゆるインサイチュコンポジットの形態で相互に結合されている。
【0045】
図2は、図1で説明した電極2を製造する方法の一例としての進行手順を示す。
【0046】
第1のステップS1で、触媒層2.2が基材2.1の上に塗布される。触媒層2.2はたとえばスパッタコーティングや原子層析出によって、基材2.1に塗布することができる。
【0047】
第2のステップS2で、メチオニン層2.3.1が触媒層2.2の上に析出される。そのために、粉末状に準備されたメチオニンが触媒層2.2の上でできる限り均等に分散されて、たとえば静電式の析出によって析出される。このときメチオニンをたとえば高圧や摩擦によって電気的に帯電させ、次いで触媒層2.2の上に分散させる。触媒層2.2の上へのメチオニンの分散は、触媒層2.2の表面での微細分散結晶の均等な分散によって行われるのが好ましい。触媒層2.2へのメチオニンの静電付着を改善するために、触媒層2.2を電位によって追加的に負荷することができる。別案として、メチオニン層2.3.1の構成を粉末塗装によって行うこともできる。このときメチオニン層2.3.1の均一な構成は必ずしも必要ではない。電解質4のその後の影響のもとで、メチオニン層2.3.1が触媒層2.2から部分的に剥離されるからである。メチオニンを析出するときの温度は、約25℃の室温に相当する。
【0048】
第3のステップS3で、金属酸化物層2.3.2がメチオニン層2.3.1の上に構成される。このことは、たとえば原子層析出によって行われる。このとき、まず金属含有の前駆化合物とカウンター化合物が準備される。次いで、金属含有の前駆化合物の少なくとも1つの層のメチオニン層2.3.1への析出によって、およびこれに続く、析出された金属含有の前駆化合物の上へのカウンター成分の塗布によって、金属酸化物層2.3.2が構成される。
【0049】
酸化アルミニウムが析出される具体的な例では、たとえばカウンター化合物としての水の存在下で高反応性であるトリメチルアルミニウムを、金属含有の前駆化合物として使用することができる。析出をするために、たとえば電極2が入れられた反応室の中にトリメチルアルミニウムを入れる。所定の時間後に、後の時点での意図しない化学反応を防止するために、余剰の前段階分子をポンプで取り除く。引き続き、たとえば水蒸気などのカウンター化合物を反応室に入れて、これがトリメチルアルミニウムと反応して酸化アルミニウムとなる。余剰の水および場合により反応生成物を、引き続いて同じくポンプで取り除く。
【0050】
金属酸化物層2.3.2の析出は、80℃〜100℃の間の温度のもとで行われ、すなわち、127℃を上回る硫黄の溶融温度を下回っている。それに伴い、触媒層2.2の導電性マトリクスにインターカレートされた硫黄が析出時に作用を受けることがない。
【0051】
このようにして製作された電極2では、高い温度のときでも導電性マトリクスにインターカレートされた硫黄の溶出が低減され、好ましくは回避される。それにもかかわらず、意図されない反応や短期的な温度超過が生じたときに触媒層2.2から硫黄が溶出したとき、この硫黄は引き続き電気接触されたままに保たれ、その後の充電サイクルで再び導電性マトリクスの中へ蓄積することができる。
【図1】
【図2】
【国際調査報告】