(19)中华人民共和国国家知识产权局

(12)发明专利

(10)【授权公告号】CN101227823B
(45)【授权公告日】20120523

(21)【申请号】200580051249.4
(22)【申请日】20051013
(73)【专利权人】 莱拉营养食品有限公司 ; 【地址】 印度安德拉邦维杰亚瓦达莱比帕特部瑞德瓦殖民地40-15-14 ;
(72)【发明人】 G·R·古卡拉吉 ; R·R·古卡拉吉 ; V·S·古图姆卡拉 ; V·萨姆派利 ;
(74)【专利代理机构】广州弘邦专利商标事务所有限公司 44236【代理人】张钇斌 ;
(51)【Int.CI.】 C07C 49/248 (2006.01) ; C07C 45/64 (2006.01) ; C07C 45/78 (2006.01) ; C07C 49/245 (2006.01) ; C07C 45/62 (2006.01) ; A61K 31/12 (2006.01) ; A61P 29/00 (2006.01) ; A61P 39/06 (2006.01) ; A23L 1/30 (2006.01) ; A61P 35/00 (2006.01) ; A61P 25/28 (2006.01) ;
(56)【对比文件】CN_1301535_A_20010704 ; JP_7206753_A_19950808 ; US_5266344_A_19931130 ; 【审查员】白优爱

(54)【发明名称】从姜黄提取物中制取四羟基姜黄色素和四氢四羟基姜黄色素浓缩成分的方法
(57)【摘要】一种制取四羟基姜黄色素浓缩成分,包括四羟基姜黄色素、去甲姜黄色素、去甲单去甲氧基姜黄色素和双去甲氧基姜黄色素及其无色的四氢衍生物的方法。该方法包括从姜黄属姜黄的有机溶剂提取物中转变发生天然姜黄色素的去甲基化。所述的四羟基姜黄色素浓缩成分通过氢化作用生成无色的四氢四羟基姜黄色素的浓缩成分。四羟基姜黄色素和无色的四氢四羟基姜黄色素浓缩成分均具有消炎及抗氧化作用。

【权利要求书】


1.一种四氢四羟基姜黄色素混合物的浓缩成分的组合物,包括30-80%的四氢四羟基姜黄色素、4-20%四氢去甲基姜黄色素、5-25%四氢去甲基单去甲氧基姜黄色素和0.1-10%四氢双去甲氧基姜黄色素。

2.一种四羟基姜黄色素及其它去甲基姜黄色素混合物的浓缩成分的组合物,包括30-80%的四羟基姜黄色素、4-20%去甲基姜黄色素、5-25%去甲基单去甲氧基姜黄色素和0.1-10%双去甲氧基姜黄色素。

3.一种制取如权利要求1或2所述的四氢四羟基姜黄色素混合物和四羟基姜黄色素混合物的浓缩成分的方法,包括以下步骤:

(i)将从姜黄根部获取的天然姜黄色素混合物,包括姜黄色素、单去甲氧基姜黄色素、双去甲氧基姜黄色素和四羟基姜黄色素在路易斯酸、嘧啶和碱性金属碘化物存在下,在一种有机溶剂中,发生去甲基化作用产生其中含有四羟基姜黄色素、去甲基单去甲氧基姜黄色素、去甲基姜黄色素和双去甲氧基姜黄色素的混合物(i);

(ii)在金属催化剂中,通入氢气或氢供体,在有机溶剂中,氢化步骤(i)获得的混合物,生成其中含有四氢四羟基姜黄色素、四氢去甲基姜黄色素、四氢去甲基单去甲氧基姜黄色素和四氢双去甲氧基姜黄色素的混合物;

其中所述的碱性金属碘化物为碘化钠或碘化钾;有机溶剂为丙酮、乙酸乙酯、甲醇、乙醇、异丙醇或它们的混合物;金属催化剂为钯、阮内镍、锰或锌;氢供体为蚁酸、醋酸、丙酸或甲酸铵。

4.如权利要求3所述的方法,其特征在于所述的步骤(i)中使用的路易斯酸选自氯化铝、溴化铝、碘化铝和氯化铍。

5.如权利要求3所述的方法,其特征在于步骤(ii)获得的混合物经硅藻土柱层析获得含80-100%的四羟基姜黄色素浓缩成分。

6.如权利要求5所述的方法,其特征在于四羟基姜黄色素浓缩成分经硅藻土柱层析后结晶获得纯四羟基姜黄色素、去甲基姜黄色素、去甲基单去甲氧基姜黄色素和双去甲氧基姜黄色素。

7.如权利要求3所述的方法,其特征在于四氢四羟基姜黄色素成分经使 用有机溶剂的硅藻土柱层析,获得80-100%的纯四氢四羟基姜黄色素。

8.如权利要求7所述的方法,其特征在于所述的四氢四羟基姜黄色素浓缩成分经硅藻土柱层析后结晶获得纯四氢四羟基姜黄色素、四氢去甲基姜黄色素、四氢去甲基单去甲氧基姜黄色素和四氢双去甲氧基姜黄色素。

9.一种具有增强的抗氧化和消炎活性的药物或食品补充组合物,其特征在于含有如权利要求1所述的四氢四羟基姜黄色素混合物的浓缩成分和如权利要求2所述的四羟基姜黄色素混合物的浓缩成分。

10、如权利要求9所述的一种药物或食品补充组合物,其特征在于所述的四氢四羟基姜黄色素混合物的浓缩成分,含有30-80%的四氢四羟基姜黄色素、4-20%四氢去甲基姜黄色素、5-25%四氢去甲基单去甲氧基姜黄色素和0.1-10%四氢双去甲氧基姜黄色素。

10.如权利要求9所述的一种药物或食品补充组合物,其特征在于所述的四羟基姜黄色素混合物的浓缩成分,含有30-80%的四羟基姜黄色素、4-20%去甲基姜黄色素、5-25%去甲基单去甲氧基姜黄色素和0.1-10%双去甲氧基姜黄色素。

【说明书】


从姜黄提取物中制取 四羟基姜黄色素和四氢四羟基姜黄色素浓缩成分的方法

【0001】本发明涉及一种制取四羟基姜黄色素及其四氢衍生物,四氢四羟基姜黄色素浓缩成分的方法。这些浓缩成分具有消炎及抗氧化作用。本发明的产品适于应用为食品添加剂,营养保健品或疗效型化妆品。

【0002】【技术领域】

【0003】自由基在许多病理性疾病,如癌症、阿尔茨海默症、帕金森症和心脏血管疾病等的产生及整个过程中扮演了重要的角色。在食品行业中,已经发现自由基会使食品在加工和贮存的过程中发生变质。因此,人们相当重视食品中用来清除自由基的抗氧化添加剂和生物系统的抗氧化增补物。抗氧化化合物可以分为两类:酚类和β-二酮。酚类化合物主要是通过氢原子供体的作用发生抗氧化作用,从而抑制自由基链条反应的传播。酚类的抗氧化潜力取决于酚中氢氧基的数量和排列方式,以及在芳香环上的其它天然取代物。极少数天然物质,如姜黄素类这样在一个分子中同时含有酚和β-二酮基团,并因此成为强效的抗氧剂。二苯基环氧庚烷酚是黄色的姜黄的特征,并被广泛用于营养保健品,食品和疗效性化妆品。图1显示了姜黄色素的化学结构式:姜黄色素、单去甲氧基姜黄色素、双去甲氧基姜黄色素、四羟基姜黄色素,以下将会分别简称为如C、MDC、BDC、TC。这些化合物均被报道形成抗氧化剂,消炎剂、抗癌剂、抗阿尔茨海默症和抗病毒制剂。但是这些天然的姜黄色素混合物在天然原料中的TC含量非常低(0-5%)。

【0004】目前,对非甾体类,以植物为主的消炎剂的需求非常巨大。5-脂肪氧化酶是白三烯和5(S)-HETE生物合成的关键酶,花生四烯酸引起的炎症、过敏症和梗阻症过程的重要缓解剂。5-脂肪氧化酶是识别抑制剂的靶酶,具有与一些炎症和超敏性为主的人类疾病竞争的潜力,包括哮喘、关节炎、肠道疾病如溃疡性结肠炎和循环系统紊乱如休克及缺血。

【0005】为了验证姜黄素类的安全、无毒的特性以及缺乏四羟基姜黄色素浓缩成分的上述问题,因此本发明的目的之一是提供富集的四羟基姜黄色素作为一种安全的饮食补充,它可以治疗炎症、自由基引起的疾病以及应用为营养保健品和疗效性化妆品。

【0006】

【0007】图1:姜黄中姜黄色素的化学结构式

【0008】【发明内容】

【0009】本发明涉及一种从姜黄(姜黄属)提取物中制取四羟基姜黄色素浓缩成分的方法,包括四羟基姜黄色素(TC),以及次要化合物去甲姜黄色素(DC)、去甲去甲氧基姜黄色素(DMDC)和双去甲氧基姜黄色素(BDC)。本发明也包括将上述成分用于对动物体给药,以及一种治疗各种炎症的方法,还包括一种在本发明的成分的给药下预防各种氧化疾病的方法。

【0010】本发明的另一个目的是提供一种用上述四羟基姜黄色素浓缩成分制取一种富集的无色四氢四羟基姜黄色素(THTC)的方法,和一种治疗各种炎症的方法,还包括一种在本发明的无色四氢四羟基姜黄色素成分的给药下预防各种氧化疾病的方法。

【0011】本发明还有一个目的是提供一种用柱层析及结晶法分离提纯TC,DC,DMDC和BDC的方法。

【0012】已经发现姜黄属植物,尤其是姜黄的有机溶剂提取物中总共含有四种姜黄色素。如图1所示并分别被标以C、MDC、BDC和TC。图1中标为TC的四羟基姜黄色素在天然姜黄色素成分中的浓度仅为0.1~5%(Mimura Akio等人,US 5266344,1993)。在四种姜黄色素中,TC显示了更强的抗癌、抗氧化和消炎活性。但是却没有关于富集姜黄色素混合物中TC的方法的报道。

【0013】本发明是针对富集姜黄色素成分中TC浓度,使之接近预期的100%。本发明的另一个目的是将提取物中少量的强效姜黄色素去甲基化成为非常强效抗氧化的去甲姜黄色素。所述的去甲基化后的产物中含有较高浓度的TC。纯TC也可以通过一种简单的纯化方法生成的TC浓缩成分中获得。

【0014】通过层析法进行一种简单的化学反应和纯化组合就可以达到这些目的。

【0015】

【0016】图2:四羟基姜黄色素浓缩成分中各组成的化学结构式

【0017】本发明从含有四种化合物的天然姜黄提取物中富集四羟基姜黄色素成分。如图2所示并被标以TC、DC、BMDC和BDC。TC的浓度范围为10-100%。

【0018】该方法涉及在合适的溶剂通过路易斯酸催化剂将姜黄提取物去甲基化生成四羟基姜黄色素浓缩成分。去甲化作用中除卤化铝之外还要使用一种有机碱和一种催化剂。通过简单的进一步处理获得的干燥物质通过HPLC分析含有50-80%的TC。

【0019】使用的路易斯酸催化剂包括氯化铝、溴化铝、碘化铝、三溴化硼或硫化甲基三氯硼螯合物或N-甲基苯胺钠盐或乙硫醇钠或在去甲基甲酰胺中的氯化锂或氯化铍。使用的溶剂包括氯仿、二氯甲烷、二氯乙烷和乙酸乙酯或它们的混合物。使用的有机碱包括嘧啶、三乙胺、哌啶,而使用的催化剂则选自碘化钠或碘化钾或PTC催化剂如溴化四丁基铵等。

【0020】纯TC可以用层析法从浓缩的四羟基姜黄色素成分中获得。该方法中可以使用的固体载体包括硅胶、反相硅胶、氧化铝和交联葡聚糖。层析技术选自柱层析、快速分离色谱、反相层析、制备高压液体层析及其组合。用来跑柱层析、快速分离色谱、反相层析、制备高压液体层析的溶剂包括丙酮、氯仿、二氯甲烷、乙酸乙酯、乙烷和水,它们可以单独使用,或相互结合使用。

【0021】本发明涉及一种从姜黄属,尤其是姜黄的提取物中制取50%~100%TC的方法,它包括的步骤有所述提取物的去甲基化,层析分离从而获得一种富集50%~100%TC的成分。

【0022】本发明也涉及一种通过使用极性和非极性溶剂作为洗提液进行层析并结晶,分离纯化本发明的四羟基姜黄色素成分中的四种化合物的方法。分离纯化后的TC、DC、DMDC和BDC(图2)的结构式已经通过它们的物理及光谱数据被测定(IR、NMR和mass)。

【0023】虽然上述富集后的四羟基姜黄色素成分的抗氧化活性强于姜黄色素,但是它的深黄色限制了它的应用。为了应用在无色食品和化妆品中,我们通过氢化法发明了一种无色的四氢四羟基姜黄色素物质。姜黄色素的氢化也会在胃肠道中自然发生。四氢四羟基姜黄色素成分的强抗氧化性与四羟基姜黄色素相似,但它不是黄色,因此应用在无色食品和化妆品中将优于目前普遍使用的传统抗氧化剂。

【0024】因此本发明也是为了获得一种无色的四氢四羟基姜黄色素(THTC)浓缩成分。

【0025】

【0026】图3:四氢四羟基姜黄色素成分的化学结构式

【0027】本发明的产自所述的四羟基姜黄色素成分的无色四氢四羟基姜黄色素浓缩成分总共含有四种四氢化合物。如图3所示,并被标以四氢四羟基姜黄色素(THTC)、四氢去甲基姜黄色素(THDC)、四氢去甲去甲氧基姜黄色素(THBMDC)和四氢双去甲氧基姜黄色素(THBDC)。THTC的浓度范围为10~100%。

【0028】该方法涉及TC浓缩成分通过在一种合适的溶剂中使用金属催化剂,并通入氢气或氢供体,从而减少双键,发生氢化作用生成四氢四羟基姜黄色素(THTC)的浓缩成分。如果需要,也可以使用一种有机碱。

【0029】使用的金属催化剂如钯碳、阮内镍、铂、锌或锰。使用的溶剂如乙酸乙酯、丙酮、甲醇、乙醇、异丙醇、四氢呋喃、二氧杂环乙烷或它们的混合物。使用的氢供体如蚁酸、醋酸、丙酸或甲酸铵。使用的有机碱如三乙胺、三甲基胺或哌啶。

【0030】纯THTC如上所述通过层析法从四氢四羟基姜黄色素浓缩成分中获取。纯THTC也可以通过纯TC的氢化作用获得。四氢四羟基姜黄色素成分经使用有机溶剂的硅藻土柱层析,获得80-100%的纯四氢四羟基姜黄色素。四氢四羟基姜黄色素浓缩成分经硅藻土柱层析后结晶获得纯四氢四羟基姜黄色素、四氢去甲基姜黄色素、四氢去甲基单去甲氧基姜黄色素和四氢双去甲氧基姜黄色素。

【0031】本发明还详述了四氢四羟基姜黄色素、四氢去甲基姜黄色素、四氢去甲基单去甲氧基姜黄色素和四氢双去甲氧基姜黄色素的混合物经硅藻土柱层析获得含80-100%的四羟基姜黄色素浓缩成分。四羟基姜黄色素浓缩成分经硅藻土柱层析后结晶获得纯四羟基姜黄色素、去甲基姜黄色素、去甲基单去甲氧基姜黄色素和双去甲氧基姜黄色素。

【0032】本发明还详述了一种通过使用上述富集的四羟基姜黄色素或纯TC或无色四氢四羟基姜黄色素来治疗炎症的方法,其活性已经通过测定5-脂肪氧化酶活性被证实。本发明所述的四羟基姜黄色素成分或纯TC或四氢四羟基姜黄色素的5-脂肪氧化酶抑制率(表1)显示了较强的5-脂肪氧化酶活性,并且该活性高于现有的商用姜黄色素混合物和乳香提取物中的强效的5-脂肪氧化酶抑制剂——AKBA。

【0033】本发明还详述了一种通过使用上述四羟基姜黄色素或纯TC或无色四氢四羟基姜黄色素浓缩成分来治疗或预防人类或食物中的基间接并发症,而该活性已经通过测定过氧化物和DPPH基净化活性被证实。本发明所述的富集的四羟基姜黄色素成分或纯TC或无色四氢四羟基姜黄色素的抑制率(表2)显示了较强的抗氧化活性,并且该活性高于现有的商用姜黄色素混合物,BHT(丁基羟基甲苯),BHA(叔丁基化对羟基苯甲醚),维他命C和维他命E。

【0034】本发明还详述了将含70-100%TC的富集四羟基姜黄色素成分用于治疗消除炎症。其消炎活性通过角叉胶诱导爪掌浮肿方法被证实。上述TC浓缩成分在50mg浓度时显示了20.56%的抑制,但是标准药物,双氯酚酸钠在25mg浓度时显示了63.10%的抑制。这些结果清楚地说明本发明所述的四羟基姜黄色素成分具有有效的消炎活性。

【0035】本发明的另一个方面是公开了一种药物组成,含有一种药物可接受载体(如有水或无水载体)中的上述四羟基姜黄色素成分或TC或无色四氢四羟基姜黄色素浓缩成分。

【0036】本发明还有一个方面是公开了一种治疗炎症的方法,包括对所需的人体或动物体以上述富集的四羟基姜黄色成分或纯TC或无色四氢四羟基姜黄色素的有效治疗量(如:有效治疗总量,减缓发展等)给药。

【0037】本发明还有另一个方面是公开了一种预防基间接并发症的方法,包括对所需的人体或动物体以上述富集的四羟基姜黄色或纯TC或无色四氢四羟基姜黄色素的有效治疗量(如:有效治疗总量,减缓发展等)给药。

【0038】下面是本发明的实施例,它仅为本发明的例证,而不能理解为是限制本发明的范围。

【0039】实施例1

【0040】四羟基姜黄色素的浓缩成分。

【0041】向冰冷的姜黄色素混合物(95%、55g)的EtOAc(2.5L)溶液中加入氯化铝(150g),接着滴加嘧啶(350mL)15分钟。回流加热反应混合物7小时。待反应混合物冷却至10℃,冷却稀释。加入HCl(20%)分解氯化铝螯合物,然后用乙酸乙酯(5x1.0L)萃取。依次用水、盐水洗乙酸乙酯 层,用无水硫酸钠干燥。过滤并蒸发溶剂。滤渣中加入氯仿(100mL)并放置10小时,将固体过滤干燥得到产物(21g,38%)。

【0042】液相色谱分析:

【0043】TC=78.40

【0044】DC=4.11

【0045】DMDC=11.52

【0046】BDC=0.86

【0047】Total=94.89%

【0048】实施例2

【0049】四羟基姜黄色素浓缩成分。

【0050】向冰冷的姜黄色素混合物(95%、110g)的EDC(4L)溶液中加入氯化铝(160g),接着滴加嘧啶(蒸馏产生,200mL)15分钟。然后加入碘化钠(5g),回流加热反应混合物27小时。待反应混合物冷却至10℃,加水(2L)稀释,再加入HCl(50%)酸化并搅拌15分钟。分离有机层后向水层加入10L水。常温下搅拌水层2小时后放置16小时。过滤固体形成物并用水(2.5L)洗,干燥后获得94g粗去甲基姜黄色素混合物,加入乙酸乙酯(2.5L)在70-80℃下搅拌1小时,用硅藻土过滤,然后浓缩蒸发溶剂得到84g产物。室温下向固体中加入乙酸乙酯(500mL)搅拌30分钟。过滤后干燥得到58g产物。

【0051】液相色谱分析:

【0052】TC=75.68

【0053】DC=6.32

【0054】DMDC=11.24

【0055】BDC=1.1

【0056】Total=95.31%

【0057】实施例3

【0058】分离纯TC[1,7-双(3,4-二羟苯基)-1,6-庚二烯-3,5-二酮]。

【0059】用硅胶(100-200孔,2Kg)吸附实施例二中获得的去甲姜黄色素混合物(1Kg,75%TC),然后硅胶柱层析,洗提剂为氯仿-甲醇(95∶5),得到纯TC,结晶氯仿-甲醇获得的黄色粉末(0.5Kg),mp 302-304℃;IR(KBr):3488,3386,1629,1617,1600,1271,1289,1142,1120,955cm-1;1HNMR(DMSO-d6)δ6.06(1H,s,H-4),6.56(2H,d,J=15.6Hz,H-2,6),6.77(2H,d,J=8.3Hz,H-5’,5″),7.00(2H,d,J=1.8Hz,H-2’,2″),7.06(2H,dd,J=8.3,1.8Hz5 H-6’,6″),7.44(2H,d,J=15.6Hz,H-1,7), 13C NMR(DMSO-d6)δ183.1,147.8,145.1,140.8,127.7,126.5,121.9,115.9,114.5,100.9;LC-MS m/z(%):(ESI-负离子检测模式)339[(M-H)-,100]。

【0060】实施例4

【0061】分离与纯化四羟基姜黄色素中的其他成份。

【0062】用硅胶(100-200孔,2Kg)吸附实施例二中获得的去甲姜黄色素混合物(1Kg),然后硅胶柱层析,洗提剂为氯仿-甲醇(95∶5),获得纯DC、DMDC和BDC。下面是这些分离后的化合物的色谱数据。

【0063】DC[1-(3,4-二羟苯基)-7-(3-甲氧基-4-羟苯基)-1,6-庚二烯-3,5-二酮]。黄色粉未,mp 164-166℃;IR(KBr):3484,1621,1267,1132,1140,964cm-1,1H NMR(DMSO-d6)δ3.82(3H,s,Ar-OCH3),6.04(1H,s,H-4),6.53(1H,d,J=16.0Hz,H-2 or H-6),6.74(1H,d,J=16.0Hz,H-2 or H-6),6.76(1H,d,J=8.5Hz,H-5’),6.80(1H,d,J=8.3Hz,H-5″),7.07(1H,dd,J=8.5,1.8Hz,H-6’),7.00(IH,d,J=I.8Hz,H-2’),7.12(1H,d,J=I.8Hz,H-2″),7.29(1H,dd,J=8.3,1.8Hz,H-6″),7.44(IH,d,J=16.0Hz,H-1 or H-7),7.51(1H,d,J=16.0Hz,H-1 or H-7); 13C NMR(DMSO-d6):183.0,183.2,148.6,147.9,147.7,145.1,140.8,140.7,126.5,122.8,121.9,121.0,120.7,115.9,115.6,114.6,111.0,101.0,55.4;EIMS m/z(%):354(M+,16),336(20),328(54),271(71),192(53),191(30),177(100),167(47),163(49),150(40),149 (24),145(84),135(48),117(42),89(57),77(43)。

【0064】DMDC[1-(4-羟苯基)-7-(3,4-二羟苯基)-1,6-庚二烯-3,5-二酮]。黄色粉未,mp 218-220℃;IR(KBr):3338,1627,962cm-1,1H NMR(DMSO-d6)δ6.06(1H,s,H-4),6.59(1H,d,J=15.8Hz,H-2or H-6),6.69(1H,d,J=15.8Hz,H-2or H-6),6.83(1H,d,J=8.2Hz,H-5″),6.79(2H,d,J=8.0Hz,H-3’,5’),7.03(1H,s,H-2″),7.09(1H,d,J=8.2Hz,H-6″),7.45(1H,d,J=15.9Hz,H-I or H-7),7.47(1H,d,J=15.9Hz,H-1or H-7),7.57(2H,d,J=8.0Hz,H-2’,6’),9.17(1H,br s,Ar-OH),9.63(1H,br s,Ar-OH),10.04(1H,br s,Ar-OH);EIMS m/z(%):324(M+,18),306(8),299(34),298(90),242(30),241(100),163(49),161(26),162(38),147(87),110(43),119(39),91(21),44(34)。

【0065】BDC[1,7-二(4-羟苯基)-1,6-庚二烯-3,5-二酮]。黄色粉未,mp 222-224℃;IR(KBr):3211,1620,1600,1269,1168,1140,955,831cm-1,1HNMR(DMSO-d6)δ6.03(1H,s,H-4),6.68(2H,d,J=16.0Hz,H-2,6),6.80(4H,d,J=8.0Hz,H-3’,5’,3″,5″),7.50(2H,d,J=16.0Hz,H-1,7),7.55(4H,d,J=8.0Hz,H-2’,6’,2″,6″);EIMS m/z(%):308(M+,20),290(14),159(36),146(100),147(87),119(38),106(42),90(42),65(32)。

【0066】实施例5

【0067】四氢四羟基姜黄色素浓缩成分。

【0068】向实施例二中获得的四羟基姜黄色素浓缩成分(95%,25g)的乙酸乙酯(100mL)溶液中加入三乙基胺(50mL)和钯碳酸钙(5%,3.75g),接着在回流加热状态下滴加蚁酸(8mL)1小时。回流加热反应混合物8小时,每间隔2小时加蚁酸(4.5mL)。反应完成后,蒸馏回收溶剂(约50mL)。等反应混合物冷却后用HCl(50%)酸化和乙酸乙酯(100mL)稀释,用硅藻土过滤并分离乙酸乙酯层,并再次用乙酸乙酯(2X100mL)萃取水层, 然后依次用水、盐水洗所收集的乙酸乙酯层,用无水硫酸钠干燥。过滤并蒸发溶剂至10mL并用正己烷(20mL)稀释。硅胶柱层析,洗提剂为氯仿-甲醇(10%,100mL),得到低温熔融固体产物(13g)。

【0069】液相色谱分析:

【0070】 THTC = 72.86 %

【0071】THDC=15.98%

【0072】THDMDC=7.56%

【0073】THBDC=0.12%

【0074】Total=96.39%

【0075】抗氧化活性

【0076】(1)过氧化物自由基清除活性。过氧化物自由基清除活性由NBT(四唑氮蓝)法确定,反应混合剂包含EDTA(6.6mM),NaCN(3μg),核黄素(2μM),NBT(50μM),不同浓度的测试药品和磷酸盐缓冲液(58mM,pH 7.8)最终配置成体积为3mL溶液,在560nm下试测光学密度,试管一律先用白炽灯照射15分钟,然后在560nm下测试其光学密度。通过比较空白对照和那些试测化合物的吸光度来测量抑制率和过氧化物自由基生成。IC50值是浓缩成分在μg级条件下的抑制率。

【0077】(2)DPPH自由基清除活性。DPPH(1,1-二苯基-2-三硝基苯肼)自由基清除活性是基于对溶有有色DPPH的甲醇溶液降低色度来衡量。乙醇中加有DPPH的甲醇溶液的测试药物的自由基清除活性反比于在516nm下测试DPPH溶液在初始与最后时的吸光度的差异。反应混合剂包括1x10-4mM的DPPH甲醇溶液和不同浓度的测试药物。通过比较测试吸光度和空白对照管来测量抑制率。

【0078】5-脂肪氧化酶活性。

【0079】四羟基姜黄色素混合物的浓缩成分,纯TC和四氢四羟基姜黄色素成分可通过比色方法筛选出对5-脂肪氧化酶的抑制作用,化验混合物包含50mM磷酸盐缓冲液pH6.3,5-脂肪氧化酶,不同浓度的二甲基亚砜和亚 油酸的测试物,共0.5mL,培养上述反应混合物5分钟后,加入0.5mL二甲酚橙铁试剂,2分钟后用分光光度计在585nm下测量OD(吸光度),用空白对照溶液代替测试物质按相同的步骤再测试,通过对测试物质与空白对照样进行吸光度比较计算出抑制百分率。

【0080】消炎活性(角叉胶诱导爪掌浮肿方法)

【0081】上述均是在动物上进行实验(维斯塔尔老鼠白变种,体重在180-300g间无论雌性或雄性),禁食时只随意的喝点水然后称重,按一定数量随机的分组,每组包括3只动物,初始时先用器官充满度测量器测量它们爪掌并记录,任意组通过胃管灌口服物进行处理,空白对照组通过加有10mL/Kg溶液(0.5%,羧甲基纤维素钠盐)进行处理,30分钟后,用皮下注射针头在所有动物的左后爪掌的特定位置皮下注射1%的角叉胶0.1mL,每只动物喂以体重20mL/Kg的水然后缺水3小时(维持一致的水合作用),3小时后,平行二次测量所有动物的爪掌并平均计算已有的两次测量结果,爪掌浮肿抑制百分率通过比较口服物处理组与空白对照组的爪掌浮肿计算出。

【0082】表1:抗氧化活性

【0083】

【0084】

【0085】BHA:叔丁基化对羟基苯甲醚;BHT:丁基羟基甲苯;

【0086】较低的IC50值,较高的是抗氧化活性。

【0087】表2:5-脂肪氧化酶活性

【0088】

【0089】AKBA:乙酰-11-酮-β-乳香酸;NDGA:去甲二氢化愈创木酸;