(19)中华人民共和国国家知识产权局

(12)发明专利

(10)【授权公告号】CN101326140B
(45)【授权公告日】20120704

(21)【申请号】200680046386.3
(22)【申请日】20061208
(30)【优先权数据】0553788_20051208_FR
(73)【专利权人】 斯奈克玛 ; 法国原子能委员会 ; 【地址】 法国巴黎 ;
(72)【发明人】 约尔·迈克尔·比诺伊特 ; 让-弗朗西斯·弗罗曼特恩 ; 奥利维尔·吉利亚 ; 卢卡斯·多莫格 ;
(74)【专利代理机构】中国商标专利事务所有限公司 11234【代理人】张晓冬 ;
(51)【Int.CI.】 B23K 1/00 (2006.01) ; B23K 35/00 (2006.01) ; F23R 3/00 (2006.01) ; F01D 9/02 (2006.01) ; C04B 37/02 (2006.01) ; B23K 101/00 (2006.01) ;
(56)【对比文件】US_5113052_A_19920512 ; 【审查员】魏静

(54)【发明名称】一种在钛基金属部件和碳化硅(SiC)基和/或碳基陶瓷材料制成的部件之间纤焊成的装配件
(57)【摘要】所述装配件包括由钎焊成对装配在一起的下述构件组成的堆结构:钛基金属部件(10);适合变形的第一中间部件(11),可以均衡金属部件(10)和碳化硅基和/或碳基陶瓷材料制成的部件(20)之间的膨胀差;第二中间部件(12),所述部件为刚性、膨胀系数接近所述陶瓷材料并用氮化铝(AIN)或钨(W)制成的部件(20)的膨胀系数;以及陶瓷材料部件(20)。

【权利要求书】


1.一种位于钛基金属部件(10)和碳化硅基和/或碳基的陶瓷材料部件(20)之间的装配件,所述装配件的特征在于,其包括一个由钎焊成对装配在一起的下述构件组成的堆结构:

·所述金属部件(10);

·适合变形的第一中间部件(11),可以均衡所述金属部件(10)和所述陶瓷部件(20)之间的膨胀差;

·第二中间部件(12),所述部件为刚性,其膨胀系数接近所述陶瓷材料部件(20)的膨胀系数,并采用氮化铝(AIN)或钨(W)制成。

·所述陶瓷材料部件(20);

其特征在于,将所述第二中间部件(12)装配到陶瓷材料部件(20)上的钎焊成份为Ag-Mn类型,其锰(Mn)的重量百分比在1%到25%的范围内。

2.一种位于钛基金属部件(10)和碳化硅基和/或碳基陶瓷材料部件(20)之间的装配件,所述装配件的特征在于,它包括由钎焊成对装配在一起的下述构件组成的堆结构:

·所述金属部件(10);

·适合变形的第一中间部件(11),可以均衡所述金属部件(10)和所述陶瓷部件(20)之间的膨胀差;

·第二中间部件(12),所述部件为刚性,其膨胀系数接近所述陶瓷材料部件(20)的膨胀系数,并采用氮化铝(AIN)或钨(W)制成;

·所述陶瓷材料部件(20),

其特征在于,将所述第二中间部件(12)和陶瓷材料部件(20)进行装配用的钎焊成份为Ag-Cu-Ti类型,其银(Ag)的重量百分比不小于50%,而钛(Ti)的重量百分比在0.01%到6%的范围内。

3.根据权利要求2所述的装配件,其特征在于,所述Ag-Cu-Ti钎焊成份包括如下重量百分比:63的Ag;35.25的Cu;和1.75的Ti。

4.根据权利要求1至3所述的任一种装配件,其特征在于,所述陶瓷材料部件(20)采用固体碳化硅制成。

5.根据权利要求1到3所述的任一种装配件,其特征在于,所述陶瓷材料部件(20)包括由碳化硅或碳纤维增强的陶瓷基体。

6.根据权利要求5所述的装配件,其特征在于,所述陶瓷基体包括至少一个自愈相。

7.根据权利要求1到6所述的任一种装配件,其特征在于,所述金属部件(10)是由基于钛、铝和钒的合金制成。

8.根据权利要求1到7所述的任一种装配件,其特征在于,所述第一中间部件(11)采用一种韧性固体材料制成。

9.根据权利要求8所述的装配件,其特征在于,所述第一中间部件(11)基本上是纯钛制成。

10.根据权利要求1到7所述的任一种装配件,其特征在于,所述第一中间部件呈可变形结构(11′)的形式。

11.根据权利要求10所述的装配件,其特征在于,所述可变形结构(11′)包括至少一个通过钎焊装配到所述金属部件(10)和所述第二中间部件(12)上的连接中间构件(11′),所述连接中间构件呈可变形板材形式,提供了同心波浪形区域(16)和钎焊平面区域(14)。

12.根据权利要求11所述的装配件,其特征在于,所述可变形结构(11′)包括至少一个部件,所述部件具有波纹管式折叠带的普通形状,形成了交错面向金属部件(10)和第二中间部件(12)的弯曲部分,所述弯曲部分由各个顶端(16)分割开来,在所述金属部件(10)和所述第一中间部件或第二中间部件(12)之间通过钎焊(15)装配在一起,该装配可在至少某些所述顶端(14,16)的平面区域(14)进行。

13.一种涡轮机喷嘴,所述喷嘴包括至少一个根据权利要求1到12所述的任一种装配件,其中所述金属件(10)是所述喷嘴的壳体,而所述陶瓷材料部件(20)是所述喷嘴的挡板。

14.一种涡轮机燃烧室,所述燃烧室包括至少一个根据权利要求1到12所述的任一种装配件,其中,所述金属部件(10)是所述燃烧室的壳体,而所述陶瓷材料部件(20)是所述燃烧室的组成部件。

15.一种涡轮机的后燃烧设备,所述设备包括至少一个根据权利要求1到12所述的任一种装配件,其中,所述金属部件(10)是后燃烧壳体,而所述陶瓷材料部件(20)是火焰稳定器臂。

16.一种涡轮机,所述涡轮机包括至少一个根据权利要求1到12所述的任一种装配件。

【说明书】


一种在钛基金属部件和碳化硅(SiC)基和/或碳基陶瓷材料制成的部件之间纤焊成的 装配件

【0001】技术领域

【0002】本发明涉及采用钎焊将钛基金属部件和碳化硅(Silicon Carbide,SiC)基和/或碳基陶瓷材料制成的部件装配在一起的领域。

【0003】背景技术

【0004】按照已知方式,陶瓷材料的特点是其机械性能,这些性能使得其适合制做结构部件,另外其特点还包括其在高温环境下仍能保持这些机械性能的能力。这种材料尤其适合制作航空领域承受高热机械应力的部件(发动机部件或导流罩构件)。

【0005】陶瓷材料和金属传统上是采用铆钉或螺栓机械连接形式而装配到一起,这种连接有时因为部件尺寸或实施难度等原因而不能使用。

【0006】此外,已知的采用陶瓷有机先驱体工艺均匀装配陶瓷材料的方法也不适合陶瓷材料和金属件之间的异质装配部件。

【0007】此外,已知的用于制作同质陶瓷/陶瓷接合剂的钎焊技术工艺很难在陶瓷材料和金属材料之间进行异质钎焊连接,这是因为陶瓷材料和金属材料的热机械特性和化学特性差异很大。

【0008】更确切地说,如果需要使用钎焊来在基于钛、铝和钒的金属合金上装配一种陶瓷材料,那么,假设这种金属合金的膨胀系数大于陶瓷材料的膨胀系数大约两到五倍时,这种装配就面临着所述两种部件之间存在的这种极大膨胀差异。结果,对于一个典型的30毫米(mm)的装配件来讲,在将装配件从钎焊成份的凝固温度冷却到环境温度时,就必须调节0.2mm的膨胀补偿。

【0009】金属部件的大量相对收缩导致两个部件之间应力程度升高,尤其是,在陶瓷部件附近的钎焊连接部位出现压缩区,而在金属部件附近会出现拉伸区。

【0010】结果,装配件弯曲,产生应力,导致其中一个部件出现断裂,而且由于其局部变形,而使得钎焊连接部位强度降低。

【0011】本发明提出了在金属部件和陶瓷材料部件之间设置中间部件来解决上述问题,所述中间部件的膨胀系数是逐渐变化的,从而可以形成一堆构件,这些构件可通过钎焊成对地热态装配到一起。

【0012】这就出现了选择中间部件材料的问题,以及与这些材料可以兼容的钎焊材料成份,从化学相容性角度来讲,其钎焊材料成份需要满足某些普遍问题,而且特别是,它们必须提供所谓的“化学屏障”功能,从而能首先避免一些成份从陶瓷材料(碳化硅、碳等)流向金属部件,反过来也是一样,其次可以防止那些非所需化学化合物的形成。

【0013】更确切地说,陶瓷材料部件和金属之间化学和热机械的不相容性会影响高温使用所需进行的直接钎焊,因为:

【0014】·大多数材料在1000℃以上时都会与碳化硅产生非常强烈的化学反应,引起无数空隙和脆性金属间化合物的形成,而且这些化合物的熔点较低,这种情况会大大损失这类装配件的机械强度;

【0015】·金属的热膨胀系数(Coefficients of Thermal Expansion,CTE)(每摄氏度10到20×10-6)和碳化硅-陶瓷基复合材料(Sic-CMCs)的热膨胀系数(每摄氏度2到6×10-6)之间的极大差别会引起连接部位残余应力大大升高,导致冷却时装配件的破裂。

【0016】这种不相容性构成了一个巨大的困难,它要求对化学、几何学和方法等方面都要进行同步调查分析。

【0017】发明内容

【0018】为此,本发明的一个主要目的是提出一个装配件来解决所述问题,这种装配件可以均衡金属部件和陶瓷部件之间的膨胀差,其次可以避免或限制非所需化合物的形成。

【0019】更确切地说,本发明提供了一种装配件,该装配件位于钛基金属部件和碳化硅基和/或碳基的陶瓷材料部件之间。该装配件包括由采用钎焊成对装配在一起的如下构件组成的堆结构:

【0020】·金属部件;

【0021】·适合变形的第一中间部件,可以均衡金属部件和陶瓷材料部件之间的膨胀差;

【0022】·呈刚性的、膨胀系数接近陶瓷材料部件且采用氮化铝或钨制成的第二中间部件;

【0023】·陶瓷材料部件。

【0024】为此,本发明提出了在陶瓷部件和金属部件之间设置两个功能截然不同的中间部件。

【0025】第一中间部件用来均衡陶瓷部件和金属部件之间的膨胀差,并通过变形来实现。

【0026】在第一个实施例中,第一中间部件由采用韧性金属制成的所述部件变形而成。在这种情况下,固体结构件形成了一层适合在陶瓷部件和金属部件之间延伸和收缩的韧性材料。

【0027】在该第一实施例中,第一中间部件优先选用基本上是纯钛制成的。

【0028】在第二实施例中,第一中间部件是用可变形—即“顺应式”—结构件制成。

【0029】理想的是,该结构包括至少一个连接中间构件,采用钎焊装配到金属部件和第二中间部件上,所述连接中间构件是用可变形板材制成,提供了可供钎焊和变形区域的平面区域。

【0030】理想的是,所述可变形结构由至少一个部件构成,所述部件具有波纹管式折叠带的普通形状,形成了交错面向金属部件和第二中间部件的弯曲部分,所述弯曲部分由各个顶端分割开来,在中间部件和金属部件之间或在第一中间部件和第二中间部件之间通过在至少某些顶端处的平面区域采用钎焊装配在一起。

【0031】首先,第二中间部件的膨胀系数要小于采用金属制成的第一中间部件的膨胀系数,而且该系数最好非常接近陶瓷部件的膨胀系数,目的是限制这两个部件的膨胀差。

【0032】此后,第二中间部件通过防止金属构件向陶瓷部件移动而起到了化学屏障的作用,目的是防止脆性化合物的形成,后者对提供良好强度的装配件是有害的。

【0033】最后,第二中间部件的选用应该是有足够弹性的,从而可以减弱作用在陶瓷部件上的机械应力,另外,所述第二中间部件又具有一定的刚性,能够使得作用在陶瓷部件上的机械应力得以分布,这样,可以使得所述部件得到机械保护,因为其本身一般都呈脆性。

【0034】根据最佳实施方式,金属部件采用基于钛、铝和钒的合金制成。这种合金称之为″TA6V″。

【0035】TA6V合金的膨胀系数在500℃时等于10.5×10-6K-1±15%。

【0036】在本发明的一个实施例中,陶瓷材料部件是用固体或单片碳化硅制成。这种材料尤其可以通过烧结一种粉状或粒状碳化硅而获得。陶瓷基体可以带有一个相,即完全由碳化硅制成。或者,这种材料可以由多个相组成,该基体包括—例如—交错序列层,这些层具有基于烧结碳化硅和/或热解碳的不同刚性,还可以能够包括至少一种自愈相,诸如基于含硼硅(Si-B-C)的层。

【0037】在本发明的另一个实施例中,陶瓷材料部件带有一个由碳化硅或碳纤维增强的陶瓷基体,尤其是在表面上带有一层碳化硅。

【0038】在实施例中,陶瓷材料部件由碳化硅或碳纤维增强的陶瓷基体组成,该陶瓷基体可以包括至少一个自愈相。这种陶瓷材料—以下称之为“A410”—和获得这种陶瓷材料的方法在公布号为FR 2 732 338的法国专利申请中给予了描述。

【0039】“A410”材料的膨胀系数在500℃时等于4.0×10-6K-1±15%。

【0040】在另一个优选实施例中,陶瓷材料部件是一种热结构材料部件,包括了碳纤维增强材料和由相对挠性材料的交错层布置的序列基体,能够使可能会出现的任何裂缝偏转,另外还包括数层相对刚性的陶瓷材料。

【0041】这种材料—以下称为“A500”—可以通过FR 2 742 433号专利申请中所介绍的准备方法而获得。

【0042】“A500”材料的膨胀系数在500℃时等于2.5×10-6K-1±15%。

【0043】由于陶瓷材料部件非常脆,所以第二中间部件必须适合吸收各种力,而且其膨胀系数必须要接近陶瓷材料部件的膨胀系数。

【0044】为此,对于所述第二中间部件来讲,本发明者更倾向于使用氮化铝(AIN)或者钨(W),因为这些材料都非常坚硬,而且其膨胀系数仅稍大于陶瓷的膨胀系数。

【0045】钨(W)材料和氮化铝的膨胀系数在500℃时分别等于5.0×10-6K-1±15%和5.2×10-6K-1±15%。

【0046】根据本发明,所使用的钎焊化合物需要呈反应性的,即它必须能够与表面材料的至少一种化学成份起反应。

【0047】这就是为什么纯银化合物不适合,因为银在上述定义的意义时是不起反应的。此外,银的溶解温度对于本发明所提出的应用范围来讲是太低了。

【0048】另外,银-铜(Ag-Cu)的钎焊化合物同样也不适合,因为相对于氮化铝或基于碳化硅和/或碳的陶瓷材料部件来讲,它不能提供足够的“润湿”性能。

【0049】所使用的钎焊成份最好是基于银的成份。

【0050】理想的是,该成份是Ag-Cu-Ti或Ag-Mn型材料。

【0051】在Ag-Cu-Ti钎焊成份时,银的重量百分比不小于50%,钛的重量百分比最好在0.01%到6%的范围内选择。这种成份与铝、钨和硅的化学反应非常强,包括即使钛的含量非常小。

【0052】本发明中所使用的Ag-Cu-Ti成份最好包括如下重量百分比:63的银(Ag)、35.25的铜(Cu)和1.75的钛(Ti)。

【0053】这种钎焊成份的优点是,可以使用市场上名称为CuSi-ABA(商业名称)的产品。

【0054】如果是Ag-Mn钎焊成份时,锰的重量百分比最好选择在1%到25%的范围内,要说明的是,锰含量是考虑锰所具有的与上述成份的化学反应性能,而后者的反应性能仅略低于钛。

【0055】本发明还提供了一种涡轮机喷嘴,其包括至少一个上述装配件,其中金属件是喷嘴的壳体(或杠杠),而陶瓷材料部件是喷嘴的挡板。

【0056】本发明还提供了一种涡轮机燃烧室,该燃烧室包括了至少一个上述装配件,其中,金属部件是所述燃烧室的壳体(或连接件,即连接构件,或部件),而陶瓷材料部件是燃烧室的组成部件。

【0057】本发明还提供了一种涡轮机的后燃烧设备,所述设备包括了至少一个上述装配件,其中,金属部件是后燃烧壳体(或平台),而陶瓷材料部件是一个火焰稳定器臂。

【0058】本发明还提供了一种涡轮机,所述涡轮机包括了至少一个上述装配件。

【0059】附图说明

【0060】下面参照附图进行说明,本发明的其它特征及优点就会清楚地显现出来,这些附图示出了一个实施例,但本发明并不仅限于此,附图如下:

【0061】·图1示出了根据本发明第一实施例的装配件;

【0062】·图2示出了根据本发明第二实施例的装配件。

【0063】具体实施方式

【0064】图1示出了根据本发明第一实施例的装配件。其主要是由四个部件采用钎焊成对装配而成,它们是:

【0065】·钛基金属部件10;

【0066】·碳化硅基和/或碳基的陶瓷材料部件20;

【0067】·适合变形的第一中间部件11,可以均衡金属部件10和陶瓷材料部件20之间的膨胀差;

【0068】·采用氮化铝(AlN)或钨(W)制成的第二中间部件12。

【0069】在所述示例中,金属部件10是一个基于钛、铝和钒的合金(TA6V)的板材或带材。

【0070】陶瓷材料部件20可以用单片(或固体)碳化硅板材或带材制成,或上述“A410”或“A500”材料制成。

【0071】在另一个实施例中,陶瓷材料部件20是用陶瓷基复合材料制成。陶瓷基体可以只由一个相组成,例如,可以全部用SiC制成,也可以由多个相组成,例如,它还可以包含至少一个具有自愈性能的相,诸如FR 2 732 338号专利申请中所介绍的。

【0072】如上所述,这种采用SiC纤维增强的材料称之为“A410”材料。

【0073】在另一个实施方式中,陶瓷基材料是由碳纤维增强材料和序列陶瓷基体构成,而刚性陶瓷材料层和相对挠性材料层交替布置,能够使得裂缝偏转。如上所述,这种材料称之为“A500”材料。这种材料可以通过FR 2 742 433号法国专利申请文件中所披露的制备方法而获得。

【0074】在结构热复合材料的诸多示例中,可能会提到如下材料:碳/碳(Carbon/Carbon,C/C)复合材料和陶瓷基复合材料(Ceramic Matrix Composites,CMC),诸如C/SiC或SiC/SiC(带有碳化硅基体的SiC或碳纤维增强材料),或者C/C-SiC(碳纤维增强材料和碳与碳化硅的复合基体)或C/Si-B-C(碳纤维增强材料和自愈基体),或当然还有C/C-SiC-Si(通过与Si的反应而硅化成的C/C复合材料)。

【0075】在这里所介绍的示例中,第一中间部件11为一种固体结构。这个部件11是用一种其韧性足以变形的材料制成,从而可以均衡金属件和陶瓷件之间的膨胀差。当然,该第一中间部件11的尺寸,而且尤其是其厚度,需要足以能够使其发挥可变形功能,但同时又不会遭受过大变形。

【0076】在这里所介绍的实施例中,第一中间部件11是用一种通常所说的T40的实际上为纯钛的材料制成。另外,也可以使用T30或T60材料。

【0077】下表1根据上述图1汇总了六个装配件的情况。

【0078】第一竖栏为陶瓷材料部件20的成份(A410或A500)、第二中间部件12的成份(AIN或W)、第一中间部件11的成份(T40,实际上纯钛)和金属部件10的成份(含钛、铝和钒的TA6V合金)。

【0079】第二竖栏给出了在制作装配件时所使用的钎焊成份,该成份在图1中为附图标记15。

【0080】钎焊成份可以由Ag-Mn(Mn 15%)型成份构成,也可以由Ag-Cu-Ti(63的Ag;35.25的Cu;1.75的Ti)成份构成。另外,也还可以使用AgZr成份(Zr 3%)。

【0081】这六个装配件都在起初经受了从钎焊温度到环境温度的冷却过程。

【0082】此外,这些装配件都使用一种测试部件进行了剪切试验,测试部件包括一个对称组件如下:CMC部件/W(钨)或氮化铝(AIN)部件/Ti部件/钛基金属部件/Ti部件/W或AIN部件/CMC部件。

【0083】由CMC材料制成的最外面的部件被固定在横向卡爪内,而位于中央的中间部件则承受横向力,因此,通过中间部件,在CMC材料制成的每个最外面部件和金属制成的中央部件之间两个中间区域施加了整体剪切应力。

【0084】表中最后一个竖栏给出了在剪切试验情况下装配件断裂时所达到的相对剪切强度值。

【0085】这种相对强度应该相对于只用陶瓷材料制成的部件20的剪切强度来进行评估,而不是使用任何装配件。

【0086】这样,本领域普通技术人员将会了解到,1号装配件的剪切强度等于A500材料剪切强度的50%。

【0087】表1

【0088】

【0090】可以看出,根据本发明所获得的装配件的剪切强度达到或甚至超过(在非常有利的情况下)陶瓷基复合材料的剪切强度。这就形成了这种机械装配件的一个决定性的质量(连接部位强度达到了一个数值,该数值等于或大于装配件的强度)。

【0091】图2示出了根据本发明的另一个装配件,其中,第一中间部件11′是由一个可变形(即“顺应”)结构所构成。

【0092】一般来讲,中间部件11′可以通过对板材16进行变形而制成,这样,在波浪型部位的交错相对顶端,或者只在某些相对顶端上,形成了同心波浪型区域和平面区域14。平面区域14采用交错钎焊,并根据其方向,钎焊到金属部件10或第二中间部件12上。

【0093】在图2所示的实施例中,可变形结构11′是通过一个普通形状的部件制成的,与波纹管式折叠带的形状相对应,形成了交错面向金属部件10和第二中间部件12的弯曲部件。

【0094】这些弯曲部件是通过顶端14、16而分隔开的,装配件钎焊15在该第一中间部件11′和金属部件10之间或者在某些顶端的平面区域14内形成的第二中间部件12上。

【0095】本发明所提出的装配件可以应用在涡轮机上,特别是可以应用在涡轮喷气发动机上。例如,金属部件10可以属于涡轮喷气发动机壳体,而陶瓷部件可以是:喷嘴挡板、燃烧室的一个部件,或者后燃烧火焰稳定器臂。

【说明书附图】


【0001】


图1

【0002】


图2